Nuclear energy is a disruptively cheap and simple way to boil water

By Rod Adams

For the majority of human history, people used their own muscles to provide almost all of the work required for survival and development. A thin slice of humanity achieved a moderate amount of personal comfort and leisure because they were able, often through an accident of birth, to control a portion of the daily work output of hundreds to thousands of their fellow humans. The only sources of work—in the engineering sense—that were not either human or animal muscle came from capturing falling water or intermittently by capturing the breezes through devices like cloth sails or wind mills.

Humans understood fire. They used it to keep warm, to process their food, to produce some implements from metal, and as a weapon of destruction. It was not, however, until inventive people with names like Savery, Newcomen, and Watt started to work out ways of using the hot gas produced when fire boiled water that humans learned how to become masters of the earth’s vast store of combustible materials.

The seemingly simple act of boiling water provided humans the means necessary to gradually invent and manufacture their way out of a life of drudgery. Steam power was the key; H2O had always been important for people, but when they learned to pump it as a liquid, heat it into a pressurized gas, and condense it back down into a liquid, H2O became the vital working fluid that could turn heat into work and force machines to become the drudges in service of human beings.

It is not an exaggeration to note that without the act of boiling water to create and use steam, getting rid of serfdom and slavery would have been virtually impossible. One of the inspirational books in my personal library, titled “Power from Steam: A History of the Stationary Steam Engine,” has a chapter titled “The Noblest Machine” that leads with a quote from an influential author from the 1880s:

England is the birth-place of the steam engine. Its invention has been a grand triumph over the material which nature has placed at our disposal. There is no limit to the sphere of its usefulness, nor can anyone measure the benefits which directly and indirectly accrue to society from its employment.

Though internal combustion engines have replaced steam engines in almost every machine that most people ever see, steam is still the working fluid for a very important class of machines. Approximately 70–80 percent of the world’s electrical power comes from machinery that uses heat from either combustion or fission to boil water. The resulting steam spins turbines that rotate conductors through magnetic fields and create the current that is the lifeblood of modern society.

Every year, humans dig up, transport, and burn more than 6,000,000,000 tons of coal, most of which is consumed in the deceptively simple activity of boiling water to create steam. Modern societies also consume millions of tons of natural gas, oil, and wood every year producing steam. Boiling water is still a foundational process that enables people in developed countries to live, study, work, and play with a leisure enabled by harnessing a variety of heat sources to be their slaves.

Unfortunately, most people do not understand just how large a debt they owe to those thousands of engineers and material scientists who figured out how to safely boil water, capture the resulting vapors at enormously high pressures, and efficiently use that high-energy fluid to spin turbines.

Not very many people in modern societies have actually seen steam machinery in action, have measured its temperature and pressure, or have seen how destructive it can be if not handled with the utmost care. Because of the work of organizations like the American Society of Mechanical Engineers, which has worked hard for about 100 years to develop and document the technical codes that prevent boiler explosions, most people take steam power for granted.

In fact, one of the frequently used phrases used in disrespect of nuclear energy is that it is “essentially a very complicated way to boil water”. One of the fiercest and most effective nuclear energy opponent, Ralph Nader, used to use a similar phrase with depressing regularity. My interpretation of the way that people use the phrase is that they expect their audience to think, “Heck, anyone can boil water, you just turn on the stove and it happens. Why do you need to make it complicated?”

I would bet that most of the people who nod their heads at that phrase have never had to cut and carry enough wood to boil a large pot of water. I am sure that few have ever spent much time watching a coal conveyor steadily feed a large boiler that is producing some of the electricity that feeds the sockets and stoves in their homes. Boiling water is not only important, but it is not as simple as it may seem. It generally requires the consumption of a vast quantity of increasingly expensive materials and it requires a tacit agreement on the part of everyone in the area of the fire to accept their share of the waste products that are spread far and wide from every fire.

The exception to that general rule is the water that gets boiled by the heat released from atomic fission. Once the work of the talented engineers and builders is complete, operating a fission heated boiler is a rather simple task. The task is not made simple by complex automation or hard working pumps and conveyors, it is enabled by physics. Once a moderate amount of fuel is loaded into a nuclear reactor, it will reliably and simply produce heat for somewhere between 18 months and 33 years (for a Virginia class submarine) with relatively little additional effort.

That fuel is not even terribly expensive; the average fuel cost for a nuclear plant operating in the United States is just 0.57 cents for every kilowatt-hour generated. Even “cheap” coal costs about three times that amount, and today’s low cost natural gas costs about 6–10 times as much per unit of electricity produced. The average total production costs (fuel plus operations and maintenance) for a U.S. nuclear power plant in 2009 was just 2.03 cents per kilowatt hour.

The fact is that nuclear energy is a cheap, clean, and even simple way to perform the vital act of boiling water.

Adams

Rod Adams is a pro-nuclear advocate with extensive small nuclear plant operating experience. Adams is a former engineer officer, USS Von Steuben. He is founder of Adams Atomic Engines, Inc., and host and producer of The Atomic Show Podcast. Adams has been an ANS member since 2005. He is a frequent contributor to the ANS Nuclear Cafe.

One thought on “Nuclear energy is a disruptively cheap and simple way to boil water

  1. Glenn

    Rod,
    Nice article. You may be interested in something I wrote for the NRC’s internal newsletter two years ago:

    Lincoln’s Birthday
    By Glenn Ellmers

    Tomorrow will be the 200th anniversary of the day Abraham Lincoln was born—February 12, 1809. Lincoln was the founder of the Republican Party, and our first president from Illinois. No doubt he would have felt deeply moved and vindicated to see another man from Illinois become the first African-American elected to the office of President of the United States.

    Lincoln detested slavery, remarking upon one occasion, “Whenever I hear any one arguing for slavery I feel a strong impulse to see it tried on him personally.” And when the South seceded in protest against his election in 1860 and attacked the federal garrison at Fort Sumter, he felt that there was no recourse but to wage civil war. His aim was not merely to restore that Union, “conceived in Liberty, and dedicated to the proposition that all men are created equal,” but to give effect to the Declaration of Independence’s promise of equality so that all Americans might experience what he called “a new birth of freedom.”

    This is the Lincoln that everyone remembers—and rightly so. But, for those of us who work here at the NRC, there was another aspect to the man that deserves a closer look. Lincoln was fascinated by inventions, and he remains today the only American president to hold a patent (for a device that could lift boats over shallow water). But he was not an engineer by training and certainly did not anticipate the advent of nuclear power plants used to generate steam for electricity. So one might think he wouldn’t have much to say about the technologies the world uses today—including the sort of things we regulate here at the NRC. Consider, however, this passage from his speech on “Discoveries, Inventions, and Improvements.”

    “[Discoveries, inventions, and improvements] are the result of observation, reflection and experiment. For instance, it is quite certain that ever since water has been boiled in covered vessels, men have seen the lids of the vessels rise and fall a little, with a sort of fluttering motion, by force of the steam; but so long as this was not specially observed, and reflected and experimented upon, it came to nothing. At length however, after many thousand years, some man observes this long-known effect of hot water lifting a pot-lid, and begins a train of reflection upon it. He says ‘Why, to be sure, the force that lifts the pot-lid, will lift any thing else, which is no heavier than the pot-lid.’ ‘And, as man has much hard lifting to do, can not this hot-water power be made to help him?’ He has become a little excited on the subject, and he fancies he hears a voice answering ‘Try me.’ He does try it; and the observation, reflection, and trial gives to the world the control of that tremendous, and now well known agent, called steam-power.”

    Not a bad insight for a man who, in 1858, had never seen a modern steam turbine or power plant! But while Lincoln was insightful enough to foresee that efficient and reliable power supplies would literally change the world, he always believed that technology exists to serve people, not the other way around. And he was convinced that the merits of any discovery, any invention, had to be judged against the standard that guided his every decision—the principles of human equality and liberty. In a speech to the Wisconsin State Agricultural Society in 1859 he explained the connection between free labor and scientific progress, and concluded by saying:

    “Let us hope… that by the best cultivation of the physical world, beneath and around us; and the intellectual and moral world within us, we shall secure an individual, social, and political prosperity and happiness, whose course shall be onward and upward, and which, while the earth endures, shall not pass away.”

    Happy Birthday, Mr. Lincoln.

    ——
    Glenn Ellmers is a communications advisor to Chairman Klein and holds a M.A. in American political thought from Claremont Graduate University.