This Deimos core configuration shows the fuel, stainless steel, polyethylene, and borated polyethylene positioned for the THETA project. (Photo: DOE)
Los Alamos National Laboratory recently performed a series of customized criticality experiments to obtain data that will support the transportation of HALEU TRISO fuel, the Department of Energy announced April 21.
Reports say LPO could lose more than half its staff
Nearly 60 percent of staff at the U.S. Department of Energy’s nuclear-friendly Loan Programs Office may be lost through President Trump’s deferred resignation program, the Washington Examiner reported.
According to the news outlet, 123 of the 210 current LPO employees have opted into the retirement buyout, which would amount to a 58.5 percent staffing cut in the office that helps finance new nuclear projects among other energy proposals. There is a 45-day period for federal employees older than 40 to change their minds, which could impact the final number of exiting staff.
Deacy (left) speaks with senior project manager Mike McDowell (center) and civil construction manager Buck Collins (right) outside the construction trailer at the Clinch River site in Tennessee. (Photo: TVA)
In a Q&A posted on TVA’s website last week about a “new nuclear heyday,” Bob Deacy shared his vision for the Clinch River nuclear site in Oak Ridge, Tenn.—and some news about next steps for the company’s small modular reactor plans.
The Tennessee Valley Authority’s senior vice president for the Clinch River project, Deacy described his vision for up to four SMRs built on plots smaller than a football field with state-of-the-art digital equipment and a newly trained workforce providing reliable 24/7 power to the grid.
An ICP worker supervises an evaluation of ultrasonic testing technology recently at the INL Site’s Advanced Mixed Waste Treatment Project. (Photo: DOE)
New ultrasonic testing equipment being used by the Department of Energy’s Idaho Cleanup Project (ICP) to confirm the integrity of thousands of legacy waste drums is saving taxpayers tens of millions of dollars, the DOE’s Office of Environmental Management announced.
The technology allows ICP personnel to inspect the thickness transuranic waste drums held in storage at the DOE’s Idaho National Laboratory Site, ensuring they meet Department of Transportation minimum thickness requirements to be shipped for disposal at the Waste Isolation Pilot Plant in New Mexico. According to DOE-EM, if drums meet the DOT thickness requirements, they can be loaded directly into shipping casks without the need for an expensive overpack container, leading to a minimum cost savings of $26 million.
An international team of researchers have collaborated to reduce operational risk and realize a vision of long-term success for the Waste Treatment and Immobilization Plant (WTP) at the Department of Energy’s Hanford Site near Richland, Wash.
Above: WTP workers add glass beads, called “frit,” to the melter inside the plant’s Low-Activity Waste Facility. (Photo: Bechtel National Inc.)
For over a decade, the DOE’s Hanford Field Office (HFO) has been working with national laboratories, universities, and glass industry experts to establish capabilities and generate data to increase the confidence in a successful startup and transition to full-time operations at the WTP.
OREM team members with the transport cask used to ship the legacy waste out of state for permanent disposal. (Photo: DOE)
Oak Ridge National Laboratory has successfully removed legacy radioactive waste stored for more than five decades, marking a significant cleanup milestone. The Oak Ridge Office of Environmental Management (OREM) and cleanup contractor UCOR processed and shipped highly radioactive source material, including radium-226 and boron, out of state for permanent disposal.
Figure showing the nine steps of the demonstration example’s RIPB design process.
Hanford crews break up concrete and remove contaminated soil near the site’s former K Area reactors in 2023. (Photo: DOE)
The cost to complete the cleanup of the Department of Energy’s Hanford Site in Washington state could cost as much as $589.4 billion, according to the 2025 Hanford Lifecycle Scope, Schedule, and Cost Report, which was released by the DOE on April 15. While that estimate is $44.2 billion lower than the DOE’s 2022 estimate of $640.6 billion, a separate, low-end estimate has since grown by more than 21 percent, to $364 billion.
The life cycle report, which the DOE is legally required to issue every three years under agreement with the U.S. Environmental Protection Agency and Washington State Department of Ecology (Ecology), summarizes the remaining work scope, schedule, and cost estimates for the nuclear site. For more than 40 years, Hanford’s reactors produced plutonium for America’s defense program.
April 16, 2025, 3:39PMRadwaste SolutionsRichard “Ricky” Furr, Larry McDougal, and John Mayer The CR-3MP is loaded on the barge at the Crystal River-3 site in Florida on January 17, 2024. (Photos: Orano DS)
The Optimized Segmentation process patented by Orano Decommissioning Services was successfully implemented for the first time at the Crystal River Unit 3 (CR-3) decommissioning project in Florida [1]. Using this approach, Orano was able to avoid the time- and resource-intensive process of packaging components into numerous standardized waste containers and significantly reduced the required segmentation activities.
A reactor operator retrieves a sample can from the MURR, as seen from above. (Photo: University of Missouri)
The University of Missouri announced today that it has signed a $10 million contract for the initial design phase of the $1 billion-plus state-of-the-art NextGen MURR research reactor project.