Business focused approach to molten salt reactors

by Rod Adams

I’ve been listening to an evangelical group of molten salt reactor enthusiasts for several years. Their pitch is attractive and they often make good arguments about the value of rethinking the light water reactor technology model, but most of the participants are unrealistic about the economic, material, technical, and regulatory barriers that their concepts must overcome before they can serve market needs.

Recently, I recognized that there are some companies interested in molten salt reactors that have a better-than-expected chance of success. They are led by hard-nosed, experienced businessmen with a balance between entrepreneurial optimism, a firm grasp of commercial technology requirements, and sound financial strategies.

One example is Terrestrial Energy, Inc. (TEI), a start-up company founded in 2013 and headquartered in Ontario, Canada. The officers and board of directors have the kind of heft and broad industry experience that reassures investors.

David LeBlanc, the chief technology officer and inventor of the firm’s basic technology, understands the need to take measured steps that take advantage of new ideas while using as much existing supply infrastructure as possible.

One of the key attractions of molten salt reactors over traditional water-cooled reactors is the ability to operate the radioactive portions of the system at atmospheric pressure. The fissionable material is dissolved in a chemical salt that has a boiling point in the range of 1400 ºC, so it operates as an atmospheric pressure liquid with a substantial margin at an operating temperature that can provide steam temperatures of 550–600 ºC.

In contrast to reactors where the fuel is composed of solid oxide pellets sealed into corrosion resistant cladding, molten salt reactors can be designed to allow fission product poisons to migrate out of the areas of high neutron flux, thus allowing a large portion of the neutrons to convert fertile materials into fissile isotopes to improve fuel economy.

The liquid fuel form allows a substantially higher burnup before reaching a condition where the core can no longer be used to produce heat; fuel pin swelling and cladding pressure are no longer operational concerns.

The integral molten salt reactor (IMSR) that LeBlanc has developed includes several key features that set it apart from some of the fanciful reactors that enthusiasts promise will extract 50–200 times more energy per unit mass of fuel using thorium “superfuel” than is possible using the conventional light water reactor fuel cycle.

One key feature is that the TEI’s IMSR uses low enriched uranium. Here is the logical explanation for that choice, quoted from TEI’s web site:

Other MSR development programs, including the extensive original U.S. program from the 1950s to 1970s, are generally focused on two key objectives: i) to use thorium-based fuels, and; ii) to “breed” fuel in an MSR-Breeder reactor.

Terrestrial Energy intentionally avoids these two objectives, and their additional technical and regulatory complexities, for the following reasons. Thorium is not currently licensed as a fuel. Liquid thorium fuels are the nuclear fuel equivalent of wet wood. Wet wood cannot be lit with a match; it requires a large torch. That large torch must come in the form of, for example, highly enriched uranium (HEU). Such a torch has no regulatory precedent in civilian nuclear power.

Furthermore, the use of proposed thorium fuel with HEU additive leads to valid criticisms of the proposed reactor’s proliferation and commercial credentials. The thorium fuel cycle would require its own involved regulatory process to become licensed for use on a wide commercial basis. The liquid uranium fuel of an IMSR can be lit easily, it is dry tinder.

Another key design decision was based on LeBlanc’s desire to avoid the complications of repairing systems or components that have been contaminated by direct exposure to molten fuel salts. The reactor, primary salt pumps, and primary heat exchangers are sealed into a single tank. There are redundant components inside the sealed boundary; replacement vice repair is the planned strategy.

Each reactor is designed to last for seven years of full power operation, but the reactor container has little in common with the thick-walled pressure vessels common in water-cooled reactors. The IMSR core is more like a single use, replaceable fuel cartridge that is inserted into a designed, shielded cavity in the power plant. There will be an empty cavity during initial startup, and after the initial core has completed its cycle, a replacement core unit is placed in the adjacent cavity. Secondary coolant lines and power production are then switched over to the new unit. The original unit thus has seven years of cooling before being moved to long-term storage to make way for a third core unit.

Refueling operations will be similar to those currently conducted. Instead of lifting individual fuel bundles, the whole core will be removed as a single unit. Instead of putting used fuel into deep pools of water, the sealed core units will be placed into shielded, cooled cavities.

As a consequence of the molten salt core, the same basic design can be arranged to produce a variety of power levels without redesigning the fuel or changing the fuel manufacturing tooling. The initially planned product lineup will include three reactor sizes scaled to produce between 29 and 290 MWe.

Steam conditions available from using a higher temperature reactor enable the use of compact, efficient superheated steam turbines instead of the larger saturated steam turbines more common in nuclear applications.

TEI investigated several possible headquarters alternatives and then selected Ontario, Canada, as having the best combination of available expertise, a sound manufacturing infrastructure, and a well-qualified nuclear regulator that uses a performance-based licensing system offering a quicker approval path for an innovative design than is available in the United States.

TEI has successfully passed through two phases of development and capital raising. Its second round of funding was significantly over-subscribed, attesting to the high level of interest in the technology and the recognized competence of the company’s management.

There is every reason to be skeptical about the chances for success for any new nuclear technology. Many readers here have heard dozens of stories before and often refer gushing salespeople to Rickover’s document on paper reactors versus real reactors. LeBlanc and his team appear to have done at least as much homework before becoming as actively public as Rickover and his team; their innovations seem well-informed, realistic, and well-timed.

It’s taken me several meetings and a good bit of additional reading about both the company and the technology before I reached the stage at which I was willing to share its story with a moderate endorsement. I’m now confident that there is no risk to my reputation from saying that Terrestrial Energy, Inc. is a company with an intriguing plan that is worth a look and a listen.


A version of the above article first appeared in the September 11, 2014, issue of Fuel Cycle Week. It is republished here with permission.

Rod Adams is a nuclear advocate with extensive small nuclear plant operating experience. Adams is a former engineer officer, USS Von Steuben. He is the host and producer of The Atomic Show Podcast. Adams has been an ANS member since 2005. He writes about nuclear technology at his own blog, Atomic Insights.

Nuclear Energy Blog Carnival 228

ferris wheel 202x201The 228th Carnival of Nuclear Bloggers and Authors has been posted at Yes Vermont Yankee.

Click here to access Carnival 228.

Each week, a new edition of the Carnival is hosted at one of the top English-language nuclear blogs. This rotating feature of nuclear “posts of the week” represents the dedication of those who are working toward a future of energy abundance, improved health, and broadened security through nuclear science and technology.

Past editions of the carnival have been hosted at Yes Vermont Yankee, Atomic Power Review, ANS Nuclear Cafe, NEI Nuclear Notes, Next Big Future, Atomic Insights, Hiroshima Syndrome, Things Worse Than Nuclear Power, EntrepreNuke, Thorium MSR and Deregulate the Atom.

This is a great collaborative effort that deserves your support.  If you have a pro-nuclear energy blog and would like to host an edition of the carnival, please contact Brain Wang at Next Big Future to get on the rotation

Seven Decades Past, A New Dawn

by Will Davis

Shortly before midnight on September 26, 1944, a sustained chain reaction was begun for the first time in a nuclear reactor whose purpose was not merely to prove that fission could be achieved or sustained. The brand new reactor at Hanford Engineer Works, Washington state, had only been complete for about a month; its first uranium fuel had begun loading only on September 13. Incredibly, this facility, of a nature that had never been attempted before (as man had only been aware of fission, itself, for less than a decade) was built in the incredible time span of 11 months; ground had been broken to build the reactor building in October 1943.

 

Construction begins on the Hanford 105B building -- the "B Reactor," first ever built.  The contractor was E.I. duPont de Nemours, usually just known as "DuPont."

Construction begins on the Hanford 105B building — the “B Reactor,” first ever built. The contractor was E.I. duPont de Nemours, usually just known as “DuPont.”

 

Hanford B reactor construction is well underway in this view; the plant's various designated spaces are now beginning to take shape.

Hanford B reactor construction is well underway in this view; the plant’s various designated spaces are now beginning to take shape.

 

With building construction nearly complete, workers have begun constructing the giant graphite moderator.  Thousands of bricks, eventually totalling 2200 tons, will be installed to slow neutrons to the energies required to interact with uranium fuel.

With building construction nearly complete, workers have begun constructing the giant graphite moderator. Thousands of bricks, eventually totalling 2200 tons, will be installed to slow neutrons to the energies required to interact with uranium fuel.

 

The completed 105B Building, otherwise known as B Reactor, the world's first full scale non-experimental nuclear reactor.

The completed 105B Building, otherwise known as B Reactor, the world’s first full scale non-experimental nuclear reactor.

The purpose of this reactor was fairly simple; it used a large number of uranium fuel elements that, under bombardment by neutrons from the chain reaction, produced plutonium. This plutonium could be extracted from the fuel through a chemical separation process, also performed at the vast Hanford site, and then concentrated to make atomic weapons. That was, in fact the purpose of this facility—under the purview of the Manhattan Project. The reactor developed a great deal of heat during this process (the original design as built was rated at about 240 megawatts thermal or MWt, but the reactor was substantially upgraded over the years to develop 10 times this) and it was of course natural to expect that this heat could be harnessed for power. At Hanford, the waste heat was simply dumped to the river, but the first nuclear electric generating stations in England and in France were of essentially this type—reactors whose primary purpose was to produce weapons material, but whose waste heat was harnessed to produce useful energy.

Cutaway of Hanford B Reactor building showing purpose of internal spaces and location of reactor.

Cutaway of Hanford B Reactor building, showing purpose of internal spaces and location of reactor.

Of course, the reactor did not exist in a vacuum; not only were many various support facilities required (including a steam plant and pump house to provide 35,000 gallons of cooling water per minute for the reactor), but there were other reactors of identical type under construction very soon, spread around the giant reservation along the Columbia River.

Hanford B Reactor site, showing various structures around the reactor building which is just right of center.

Hanford B Reactor site, showing various structures around the reactor building which is just right of center.

Today, B Reactor remains unique at the site. While a number of other reactors were built, operated, and eventually shut down (as was B on February 12, 1968, for the last time) over the intervening years, these have been “cocooned” or placed in storage. B Reactor on the other hand is preserved (although long since defueled and cleaned up) and is open for tours; the site has received numerous landmark awards (including from the American Nuclear Society) and is recognized today for the place it played in history in many ways.

It’s quite clear that when the sun rose on September 27, 1944, it did so on a world that had changed—a world that could never turn back. While the immediate result of this project was nuclear weapons, nuclear energy had already been considered (since 1939, in fact, by the US Navy) and both might be thought of as having been born the night before. As the world today pulls back from nuclear weaponry, it finds itself advancing in energy demand, with nuclear playing a role now even into developing countries in Africa as well as established and prosperous countries in the Middle East. The immensity of the achievements of September 1944 cannot be underestimated.

Hanford B Reactor

For More Information:

B Reactor – Dep’t. of Energy / Hanford Site

B reactor is located in the 100 Area at Hanford Site.

DOE Hanford has its own YouTube channel, with dozens of videos showing work and remediation all over the site; some feature B reactor.

Sources for this article:

The Atomic Energy Deskbook.  John F. Hogerton;  Reinhold Publishing Company, New York, 1963.

Manhattan Project – B Reactor.  Brochure, US Dep’t of Energy, 2009.

History of 100B Area.  WHC-EP-0273  Westinghouse Hanford Company for US Dept. of Energy, October 1989.

Hanford’s Historic B Reactor.  HNF-40918-VA Rev 0.  Fluor Corporation for US Dept. of Energy, March 2009.

SavannahWillinControlRoomWill Davis is the Communications Director for the N/S Savannah Association, Inc. where he also serves as historian, newsletter editor and member of the board of directors. Davis has recently been engaged by the Global America Business Institute as a consultant.  He is also a consultant to, and writer for, the American Nuclear Society; an active ANS member, he is serving on the ANS Communications Committee 2013–2016. In addition, he is a contributing author for Fuel Cycle Week, and writes his own popular blog Atomic Power Review. Davis is a former US Navy reactor operator, qualified on S8G and S5W plants.  Davis is temporarily managing all social media for the American Nuclear Society.

Presenting Atucha III

Atucha I and II at right; artist's concept of Atucha III at left.  Courtesy Nucleoelectrica Argentina S.A.

Atucha I and II at right; artist’s concept of Atucha III at left. RIght-most unit is Atucha I. Courtesy Nucleoelectrica Argentina S.A.

by Will Davis

Nucleoelectrica Argentina S.A. announced in July that it had entered into a contract with China National Nuclear Corporation to build a Chinese–sourced version of the traditional Canadian CANDU reactor at its Atucha site. This 800-MWe plant will be the fourth at the site (already occupied by two Siemens pressurized heavy water reactor plants, and the just-begun CAREM Small Modular Reactor plant) and the nation’s fifth nuclear plant overall (adding in the CANDU plant at Embalse.) This new unit will be Argentina’s most powerful nuclear unit, topping Embalse by 200 MWe.

Just yesterday, Nucleoelectrica Argentina released a video (subtitled in English and Chinese) showing the location and construction of this new nuclear plant—a plant that not only marks a step forward for Argentina, but in the bigger picture a step forward for China’s desired goal of widely exporting nuclear power plants.

Click here to see the video on Nucleoelectrica Argentina’s YouTube channel.

Nucleoelectrica Argentina S.A. image of Atucha III, a CNNC / CANDU plant, under construction.

Nucleoelectrica Argentina S.A. image of Atucha III, a CNNC/CANDU plant, under construction.

Atucha III’s construction is expected to last eight years, and is a joint project between Nucleoelectrica Argentina, China National Nuclear Corporation, and Industrial and Commercial Bank of China. Nucleoelectrica Argentina will act as both owner-operator and architect-engineer, with CNNC providing “technical support, services, equipment and instrumentation” as well as materials that will ultimately be fabricated into parts in Argentina. The reference plant for the Atucha III design is the Qinshan CANDU-6.

In March of this year, Nucleoelectrica Argentina proudly announced the 40th anniversary of Atucha I, which it describes as “the first nuclear electric generating plant in Latin America.” The company expects to build yet another, still unspecified large commercial unit at the same site in the future, according to World Nuclear Association.

For More InformationClick here to see World Nuclear Association’s paper on Argentina’s nuclear energy program.

 

SavannahWillinControlRoomWill Davis is the Communications Director for the N/S Savannah Association, Inc. where he also serves as historian, newsletter editor and member of the board of directors. Davis has recently been engaged by the Global America Business Institute as a consultant.  He is also a consultant to, and writer for, the American Nuclear Society; an active ANS member, he is serving on the ANS Communications Committee 2013–2016. In addition, he is a contributing author for Fuel Cycle Week, and writes his own popular blog Atomic Power Review. Davis is a former US Navy reactor operator, qualified on S8G and S5W plants.  Davis is temporarily managing all social media for the American Nuclear Society.

Nuclear Energy Blog Carnival 227

ferris wheel 202x201The 227th Carnival of Nuclear Bloggers and Authors has been published at The Hiroshima Syndrome.

•Click here to access this week’s edition.

Each week, a new edition of the Carnival is hosted at one of the top English-language nuclear blogs. This rotating feature of nuclear “posts of the week” represents the dedication of those who are working toward a future of energy abundance, improved health, and broadened security through nuclear science and technology.

Past editions of the carnival have been hosted at Yes Vermont Yankee, Atomic Power Review, ANS Nuclear Cafe, NEI Nuclear Notes, Next Big Future, Atomic Insights, Hiroshima Syndrome, Things Worse Than Nuclear Power, EntrepreNuke, Thorium MSR and Deregulate the Atom.

This is a great collaborative effort that deserves your support.  If you have a pro-nuclear energy blog and would like to host an edition of the carnival, please contact Brain Wang at Next Big Future to get on the rotation

Another Nuclear Design Approved by the NRC

• This week the GE-Hitachi ESBWR design received its Design Certification from the Nuclear Regulatory Commission.

• “Design Certification” is a step in the licensing process for new nuclear power plants that allows a basic design for a nuclear plant to simply be referenced in the actual licensing process for a site, theoretically speeding the process.

ESBWR - Illustration courtesy GE-Hitachi Nuclear Energy

ESBWR – Illustration courtesy GE-Hitachi Nuclear Energy

by Will Davis

Earlier this week, the US Nuclear Regulatory Commission granted design certification to General Electric’s Economic Simplified Boiling Water Reactor nuclear plant design, ending a years-long effort by GE to get design certification (called a DCA) and potentially paving the way to further new nuclear builds in the United States.

Dr. Solomon Levy mentions in his book “50 Years in Nuclear Power: A Retrospective” (American Nuclear Society, 2007) that the SBWR or “Simplified Boiling Water Reactor,” the predecessor design to the just-certified ESBWR, was begun as a design effort in the 1980s along with several other advanced nuclear plant designs. At that time, design was beginning to shift to passive safety features—those that take effect without operator action, which are included in the new design.

American Nuclear Society Treasurer Margaret Harding was with GE in various capacities for many years, and is familiar with BWR series development; she served as Fuel Engineering Leader for the ESBWR project. “The SBWR was a fully natural circulation reactor (meaning there are no pumps to move water through the core), was simpler, and thus less expensive than the forced recirculation designs that came before it such as the BWR/6 and ABWR,” she said. “The SBWR design eventually evolved into the ESBWR, which is even more simplified and has a number of both passive and active safety features.”

Harding said that there was a major push to reduce equipment and piping overall, leading to the decision to use natural circulation (the tendency of hot water to rise over cold water), but this led to the design of a wider, flatter reactor core that will require a slightly higher uranium enrichment than forced circulation BWR reactors and that may be slightly less economical from a fuel consumption standpoint. “But because fuel is such a small percent of your operating costs, that disadvantage isn’t huge,” she added.

Natural circulation BWR plants aren’t new; the Elk River Reactor, built by Allis-Chalmers (originally ACF) for Rural Cooperative Power Association in Minnesota in the late 1950s, was a natural circulation boiling water power reactor. Early problems with recirculation piping in various makes of boiling water reactors were another factor that led to the determined effort over the years to either move the recirculation pumps inside the reactor vessel and eliminate external piping (GE BWR/6, various ASEA–ATOM BWRs and the Hitachi–GE HP-ABWR) or else eliminate them entirely as in the ESBWR.

Of course, ESBWR is fully a GEN III+ plant (light water reactor with advanced safety features) in every sense of the term, with both fully passive and active core cooling features, a core catcher, a new containment, and more. GE-Hitachi has combined proven features from operating experience with a half century of boiling water reactors with advanced features in this design, which also interestingly is near the high end of available outputs with an electrical rating of 1600 MWe gross. The plant is available with either an 1800 RPM turbine generator for utilities that provide 60 Hz power, or a 1500 RPM unit for those that provide 50 Hz.

As of now, only two projects in the United States that have specified the ESBWR are active—namely, DTE Energy’s plan for a new Fermi-3 unit, and Dominion’s plan for a new North Anna Unit 3. DTE submitted to the NRC for a Combined License Application (COL) in September 2008, while Dominion submitted its COL in November 2007. Neither project presently has a planned date of completion for NRC review/issuance of the COL, however. In the case of North Anna-3, much of the delay centers on the fact that while Dominion initially selected the ESBWR, it switched reactor designs from 2010 to 2013 to the Mitsubishi US–APWR and then reverted to the ESBWR.

What’s next? Well, the next design to be certified in the United States might well be the South Korean APR1400. While the review process for this design was thrown back to Korea Hydro & Nuclear Power in December 2013 and remains officially at the “pre-application” status, a recent announcement by Korea Electric Power Company Engineering & Construction (which designs and builds Korean nuclear plants) reveals a sweeping inter-corporate contract among the major players in the South Korean nuclear industry to restart the push for US NRC design certification with actual application made by the end of 2014.

GE-Hitachi's ESBWR displays a number of highly advanced features, including a new containment, passive core cooling, and a core catcher.

GE-Hitachi’s ESBWR displays a number of highly advanced features, including a new containment, passive core cooling, and a core catcher.

For more information:

• GE-Hitachi has a great deal of information available to the public on its website. Click here to access their ESBWR page that includes specifications, illustrations, and very detailed downloadable documents.

See the GE-Hitachi Nuclear Energy press release.

_______________________________

SavannahWillinControlRoomWill Davis is the Communications Director for the N/S Savannah Association, Inc. where he also serves as historian, newsletter editor and member of the board of directors. Davis has recently been engaged by the Global America Business Institute as a consultant.  He is also a consultant to, and writer for, the American Nuclear Society; an active ANS member, he is serving on the ANS Communications Committee 2013–2016. In addition, he is a contributing author for Fuel Cycle Week, and writes his own popular blog Atomic Power Review. Davis is a former US Navy reactor operator, qualified on S8G and S5W plants.  Davis is temporarily managing all social media for the American Nuclear Society.

Surface storage of used nuclear fuel – safe, cost-effective, and flexible

by Rod Adams

In August 2014, the U.S. Nuclear Regulatory Commission approved NUREG-2157, Generic Environmental Impact Statement for Continued Storage of Spent Nuclear Fuel. That action was the end result of several years worth of detailed analysis of the known and uncertain impacts of storing used nuclear fuel on the earth’s surface in licensed and monitored facilities.

As summarized in section 8 of the document, the staff determined that the environmental impact under expected conditions is small and acceptable even for an indefinite period of time. The analysis included consideration of a complete societal breakdown and loss of institutional control and determined that this situation would have an uncertain effect on the safety and security of used nuclear fuel, but determined that there is little likelihood that society will falter that much.

NUREG-2157 both eliminates the hold that was placed on issuing new or renewed nuclear facility licenses and it provides the technical basis supporting a decision to stop working on a geologic repository. If storing used material on the surface is acceptably safe, environmentally sound, and cost-effective for the foreseeable future, it would be a waste of resources to attempt to develop a facility using today’s technology. It is likely that technology will improve in the future. It is inevitable that the material of interest will become easier to handle as the shorter-lived, more active components decay at a rate established by physical laws.

NRC Chairman Allison Macfarlane wrote the following perceptive statement in her comments about her vote on the rule:

In essence, the GEIS concludes that unavoidable adverse environmental impacts are “small” for the short-term, long-term, and indefinite time frames for storage of spent nuclear fuel. The proverbial “elephant in the room” is this: if the environmental impacts of storing waste indefinitely on the surface are essentially small, then is it necessary to have a deep geologic disposal option?

Almost exactly right! We should ask hard questions of those who maintain that “deep geologic disposal is necessary” because “a majority of the public industry, academia, and regulators” say it is. Here are some questions worth asking:

  • Why do you think a mined deep geologic repository is required?
  • What makes it so important?
  • Where is the recorded vote on which you base your claim that it is the majority opinion?
  • If there was a vote, when was that vote taken?
  • Have there been any changes in circumstances that challenge the validity of that determination?
  • Should options besides a mined deep geologic repository be reconsidered?
  • How much will it cost each year to simply defer action into the indeterminate future?
  • From an accounting perspective, aren’t costs that are deferred far into the future worth less, not more, if they are recalculated into today’s dollars?

Those who have read Macfarlane’s full comment should recognize that she is not only the source of the “elephant in the room” statement above, but she is also the source of the assertions that the United States must continue pursuing a mined geologic repository because we have a “long-established responsibility to site a repository for the permanent disposal of spent nuclear fuel,” and she wants to make sure that the NRC’s determination that continued surface storage represents a small environmental impact for the indefinite future does not enable “avoiding this necessary task.”

Last week, I had the opportunity to ask Chairman Macfarlane if she thought that the NRC had a role in deciding U.S. policy on long-term nuclear waste storage. She explained that the only role for the NRC would be to review the license application submitted for any specific facility. The responsibility for planning and developing that facility and obtaining the funds necessary would be under the purview of a different agency.

I asked what the NRC’s role should be if no organization submits an application for a facility. She admitted that its only role in that case would be to continue monitoring existing facilities and approving license renewals or new licenses.

Congress can, and should, make a determination that the plan for nuclear waste for the indefinite future is to continue safely storing used material. It should remove the responsibility for permanent disposal of nuclear waste from the Department of Energy and put it into industry’s hands to solve. Of course, the industry will remain under the watchful eye of the already established federal regulator using procedures and processes that are already in place and continually being refined. It should make use of existing products and services, continue improving those offerings and should consider the need for facility consolidation as that makes economic sense.

Macfarlane and I also agree about when we would begin to believe that the United States can site, license, build, and operate a mined deep geologic repository, as she said:

I will have confidence in the timing when a renewed national consensus emerges on a repository for spent nuclear fuel.

(Emphasis added.)

There is no reason to suspect that a sufficiently bulletproof consensus will ever exist. Recent history has proven that it takes just a handful of people elected or appointed into the right positions to derail even the best laid plans made with strong support throughout the rest of the country.

Though Macfarlane seems concerned about the potential impact if there is a “loss of institutional control,” the controls required to ensure continued safety and environmental protection from used nuclear fuel are simple and easily implemented. As long as we do not believe that future generations will forget how to read, we can be sure enough that they will remember how to keep used nuclear fuel safely isolated.

Many people in Chairman Macfarlane’s generation—which is also my generation—probably believe at least some of the many entertainment products depicting that there is going to be an inevitable dystopia in the future. Those fictional predictions of the future might have made for good reading or viewing, but they are as useful a decision tool as any other wild fiction. Even if their fanciful dystopia becomes reality, used nuclear fuel will be low on the prioritized lists of risks.

Macfarlane has expressed some concerns about the financial responsibility associated with continued storage of used nuclear fuel. Establishing bonds or other forms of continued financial surety is a common business practice. Radioactive materials are not uniquely hazardous or even uniquely long-lived compared to other elements and compounds in common industrial service. We have learned to live with them. We have proven that we know how to protect the public from any harm. There is no reason to expect that society will forget the lessons it has already learned.

A simple financial solution would be to have nuclear plant owners establish a used fuel fund that would be as isolated from their normal finances as their decommissioning funds. The experience that we have with the current Nuclear Waste Fund shows that a tiny fee on each unit of nuclear electricity will grow into a very sizable fund if undisturbed over time. We should stop stealing the capital accumulated by such a fee to pay for other continuing government expenses and we should not fritter it away by conducting geologic studies of the depths under any region that has the proven potential to produce politically powerful majority leaders. (Nearly every state in the union has that potential given the longevity of any proposed repository program.)

In the conclusion of her seven page comment, Macfarlane included the following statement:

Finally, I note that at least one commenter has suggested that development of a repository in the U.S. has developed into a Sisyphean task. I agree that much in the national management of spent fuel and development of a geologic repository over the past decades fits this analogy.

Once again, I agree with Macfarlane’s description of the current situation associated with attempting to site a single geologic repository in the United States.

Americans must remember that we are not subjects of Greek gods condemned to continue the frustratingly impossible task of pushing a rock uphill every day just to have it roll back down at the end of the day. We are free members of a society that has the ability to make choices and to change its mind to adapt to new situations or when new information is revealed. The cancellation of Yucca Mountain through actions of a tiny group of people shows that successfully siting a repository in the United States, with its multiple interest groups and arcane procedural rules, is not possible.

The good news is that we don’t need a repository in order to operate nuclear power plants safely and to store the created residues in a way that produces negligible environmental impacts. We don’t need a government program that can be milked for assets and jobs for decades before being derailed. We don’t need to have the federal government—which means us, as taxpayers—pay the costs of continued storage; the costs are predictable and can be paid with a small fee on each unit of power generation.

Making the choice to quit now and spend our limited resources on something more useful must not be judged as unfair to future generations. Used nuclear fuel has potential value, and we can create savings accounts now that can enable a different long-term solution in the distant future when there is more general agreement that constipating nuclear energy would be a suicidal course of action for society.

As technology improves, assets build up in the coffers of responsible parties, nuclear power plant sites continue to be developed, nuclear power plant sites occasionally become repurposed, and the demand for nuclear fuel changes, future societies can change their mind. Nothing in the above plan precludes any choices for the future; the key action needed today is to stop digging the hole that currently seems to provide no possibility for escape.

Rod Adams is a nuclear advocate with extensive small nuclear plant operating experience. Adams is a former engineer officer, USS Von Steuben. He is the host and producer of The Atomic Show Podcast. Adams has been an ANS member since 2005. He writes about nuclear technology at his own blog, Atomic Insights.

ANS Webinar with NRC Chairman Allison Macfarlane

Nuclear Regulatory Commission Chairman Allison Macfarlane today fielded questions from in-person and virtual attendees at a live, unscripted 60-minute webinar on nuclear energy issues. The event—”Bloggers’ Roundtable”—was held in Washington, DC, and was a collaborative effort of the NRC and the American Nuclear Society. The webinar provided an opportunity for nuclear bloggers and social media personalities to discuss the NRC’s perspectives on a wide range of nuclear-related issues.

Webinar recording of A Conversation with U.S. NRC Chairman Allison Macfarlane

photo 4 320x240

ANS Moderator Margaret Harding noted that many questions referred to the proper purview of the NRC—such as, could the NRC take a stronger role in “promoting” nuclear energy? Should another government entity be in that business? How do you make the jargon of the trade more accessible and understandable to laypersons?

Other questions dealt with the preparations for licensing of small modular reactors; radiation regulation in light of challenges to the linear no-threshold model; rulemaking concerning post-Fukushima safety enhancements; and much more.

Questions that were more technical or required a more detailed response are to be tackled as follow-up responses here at ANS Nuclear Cafe.

photo 3 320x240

A stand-alone video from today’s virtual forum is under construction—for immediate access please tune in and enjoy the webinar recording. Thank you to NRC Chairman Macfarlane, ANS Moderator Harding, and all attendees.

photo 1 320x240

Nuclear Energy Blog Carnival 225

ferris wheel 202x201The 225th Nuclear Energy Blog Carnival is being hosted this week right here at the ANS Nuclear Cafe.  Every week, the world’s top pro-nuclear authors and bloggers submit the most popular or most important articles from that week; the selections are then compiled at one of a set of rotating sites and featured as the “Carnival.”  Let’s jump right in to this week’s significant contributions.

Nuke Power Talk – Gail Marcus

A New Path Forward?

At Nuke Power Talk, Gail Marcus discusses the recent announcement from Loving County, Texas, that they are interested in serving as a host site for the nation’s high-level waste.  This expression of interest is in line with the recommendations of the Blue Ribbon Commission, as well as with the experiences of other countries, and could, in time, help pave a new path forward for HLW disposal in the US.

Gail Marcus also published a trio of posts this week at Nuke Power Talk that capture the main points of several articles recently printed in The Guardian in the UK that attempt to explain policymakers to scientists, scientists to policymakers, and the public to both scientists and policymakers.  Particularly in the nuclear area, where the views of the public and of policymakers are so important to the future of the industry, it is worthwhile to think about such things as the different pace, interests, and influences of each of these groups.

Science and Policymaking: Part I

Science and Policymaking: Part II

Science and Policymaking: Part III

———-

Forbes – Jim Conca

Germans Boared with Chernobyl Radiation

While the news media would like Germans to be afraid of wild radioactive boars roaming Saxony, these boars aren’t even mildly radioactive. You’d have to eat 3,000 lbs of this “hot” boar meat to equal a single medical CT scan. Which would make meals pretty boaring.

———-

Atomic Insights – Rod Adams

Is it really necessary to have a deep geologic repository for spent nuclear fuel?

It’s time to give the United States nuclear enterprise permission to quit trying to site a deep geologic repository for used nuclear fuel.

Quoting Chairman Macfarlane: In essence, the GEIS [for continued storage of spent fuel] concludes that unavoidable adverse environmental impacts are “small” for the short-term, long-term, and indefinite time frames for storage of spent nuclear fuel. The proverbial “elephant in the room” is this: if the environmental impacts of storing waste indefinitely on the surface are essentially small, then is it necessary to have a deep geologic disposal option?

Good question. The answer is no.

———-

Yes Vermont Yankee – Meredith Angwin

Another name for methane: the Microgrid for Vermont

Vermont’s major distribution utility is Green Mountain Power, and their CEO just announced a business partnership to build microgrids in Vermont. She hopes the microgrids will ultimately eliminate  the “archaic” grid built with “twigs and twine.”  Actually, the partnership goal is to sell small, gas-fired Stirling engines, called “Smart Solar” engines, and to sell natural gas. Green Mountain Power is a wholly owned subsidiary of Gaz Metro of Quebec. Vermonters should not assume that Gaz Metro has their best interests at heart.

———-

Neutron Bytes – Dan Yurman

Saudis update ambitious nuclear energy plans

The Kingdom of Saudi Arabia plans to kick off a much talked about $80 billion program to shift 15% (17 GWe) of its electric generating capacity from fossil fuels to nuclear reactors.

———-

Next Big Future – Brian Wang

Thorium Isotope Breeder Proposed by Maglich, who has constructed four Migma Colliding Ion Beam fusion systems (with explanatory video and text)

Fusion isotope breeders can work with thorium molten salt reactors for nonproliferation

$10 trillion would be needed to rebuild the electric grid to support large additions of solar and wind generating sources

John Kutsch gives an informative energy rant; a second video debunks Dr. Helen Caldicott.

———-

Atomic Power Review – Will Davis

APR+ Design Certification Received

While the rest of the world watched for further hints of when a new boiling water reactor type might get through the type approval process in the USA, a different type of reactor received design certification in South Korea.  Details on this announcement and the APR+ in this post.

———-

ANS Nuclear Cafe - submitted by Paul Bowersox

ANS Winter Meeting – What’s In It For You?

Will Davis presents an appeal to those who have not yet committed to attending the ANS Winter Meeting in California.  There are many good reasons to attend if you can find the means – here are just a few worth considering.

———-

That’s it for this week’s entries.  THANK YOU to all the authors and submitters!

ANS Winter Meeting, November 9-13: What’s In It For You?

by Will Davis

I’d like to take this opportunity to ask you a question: Have you considered attending the American Nuclear Society’s Winter Meeting yet? Before you answer, I’d like to give you a few compelling reasons to do so from my own personal experience.

ANS_2-1205-2 attendees 200x133•  People  At ANS National meetings—at all ANS meetings, really, but especially at the two major national meetings each year—you’ll get a chance to meet and speak with people from every corner of the industry, and from a number of eras as well. People you have perhaps only e-mailed, and people who rarely use e-mail—they will be there. This is a prime opportunity to meet folks you’ve always wanted to meet. “But, what will that get me?” you say.

ANS_2-1206-student poster 200x132•  Networking  There is no end to the networking opportunities that happen around these meetings—before sessions, at lunch, and all evening afterward. Industry groups, regulatory groups, universities… they’re all present. Most folks find their schedules so packed with these meetups that by the time the actual meeting week arrives, there’s precious little other time undesignated. The number of things that can happen as a result of these networks is practically unlimited. The inspired atmosphere of the meetings makes great things happen—I’ve seen it.

•  Learning  To pick a particular topic, I can honestly say that in discussions both in person and on the internet about the Fukushima Daiichi accident, I have been consistently better equipped than even some other nuclear advocates as a direct result of having attended the ANS Winter Meeting in San Diego a couple years back. Personnel from TEPCO, other Japanese utilities, national and world regulatory bodies, universities, and laboratories around the world convened for a three-day Fukushima Daiichi sub-topical that provided an incredible level of detail and examination of the accidents. The same experience could not be had anywhere unless one went to Japan. I have considered this, and other ANS meeting topicals, to be invaluable. Again, only one possible example of what can happen for you if you attend these meetings.

Winter Meet 2013  ANS_2-1067 200x132•  Working  You can certainly make the case that your employer might well find you to be a more valuable employee after you’ve attended one of these meetings. The opportunities to grow and learn as a person and as an employee, and thus bring the benefits of those increased skills back to your employer, are never greater than at an ANS meeting. The technical papers presented, and opportunities to find out about new methods, or new programs, are a fertile field for growth. For those looking for employment in a nuclear-related field—what better environment in which to find out what’s hot, what’s available, and make that best first impression?

1117ZZ_0014CS 200x133I am sincerely hoping that folks who hadn’t thought about attending will reconsider after having read what I have to say. I think that the ANS national meeting experience is invaluable. I’ve tried over these years to relate it to everyone I can, so that the opportunities made possible by this ANS membership benefit are seized by everyone who can attend.

Yes, there will be a number of presentations honoring those who have earned high awards from ANS. There will be plenaries, and perhaps a formal dinner or two. Those have a rightful place at such meetings and I personally enjoy all of them. But I must say that I find the advantages of the additional aspects I’ve described above to be the best reasons to attend; I hope you’ll consider it.

2014 winter meeting front cover 200x258

__________________________

SavannahWillinControlRoomWill Davis is the Communications Director for the N/S Savannah Association, Inc. where he also serves as historian, newsletter editor and member of the board of directors. Davis has recently been engaged by the Global America Business Institute as a consultant.  He is also a consultant to, and writer for, the American Nuclear Society; an active ANS member, he is serving on the ANS Communications Committee 2013–2016. In addition, he is a contributing author for Fuel Cycle Week, and writes his own popular blog Atomic Power Review. Davis is a former US Navy reactor operator, qualified on S8G and S5W plants.

Nuclear Energy Blog Carnival 224

ferris wheel 202x201The 224th edition of the Carnival of Nuclear Bloggers and Authors has been posted at Things Worse Than Nuclear Power.  Click here to see this latest installment in a long running tradition among pro-nuclear authors and bloggers.

Each week, a new edition of the Carnival is hosted at one of the top English-language nuclear blogs. This rotating feature of nuclear “posts of the week” represents the dedication of those who are working toward a future of energy abundance, improved health, and broadened security through nuclear science and technology.

Past editions of the carnival have been hosted at Yes Vermont Yankee, Atomic Power Review, ANS Nuclear Cafe, NEI Nuclear Notes, Next Big Future, Atomic Insights, Hiroshima Syndrome, Things Worse Than Nuclear Power, EntrepreNuke, Thorium MSR and Deregulate the Atom.

This is a great collaborative effort that deserves your support.  If you have a pro-nuclear energy blog and would like to host an edition of the carnival, please contact Brain Wang at Next Big Future to get on the rotation.

Video Matinee: Controlling a Nuclear Power Plant

This new video from AREVA takes a fascinating look at the “brain and nervous system” for controlling a nuclear power plant: the plant’s Instrumentation and Control (I&C) system.

Thanks to AREVA Next Energy Blog for sharing this video.

areva iandc snip 365x201

Nuclear Nonproliferation and Safeguards Education at Universities

By Lenka Kollar

I recently attended a Safeguards Education Roundtable at the Argonne National Laboratory sponsored by the Next Generation Safeguards Initiative (NGSI).  University professors and nonproliferation experts from U.S. national laboratories met at this event to discuss safeguards education at universities. The goal of NGSI is to “to develop the policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system” as it evolves in the future. A major pillar of the program is developing the next generation of professionals to work in the nonproliferation and safeguards field—and to make sure that the next generation of nuclear professionals is aware of nonproliferation and safeguards issues.

The employment opportunities for students interested in nonproliferation are quite diverse. National laboratories in the United States and around the world perform technical and policy research to address safeguards issues. The International Atomic Energy Agency in Vienna also employs safeguards inspectors and other professionals working in safeguards, security, and nuclear energy development.

Even if students are not interested in working directly in the nonproliferation field, it is important that these issues are brought to the attention of nuclear professionals as they enter the workforce. Safeguards and security are very important within the nuclear industry and nonproliferation is a worldwide issue. An increasing number of nuclear engineering programs are including nonproliferation education within their curricula.

The goal of the roundtable at Argonne was to familiarize university professors with nonproliferation education and to discuss how NGSI can help with curriculum development. Attending professors came from a variety of universities and programs, both engineering and policy. In many instances, engineering and policy professors have worked together at universities to provide nonproliferation education for students of both fields.

Below are some resources that professors and students can use to teach and learn more about nonproliferation and safeguards. NGSI also sponsors classes that students and young or mid-career professionals can attend.

Textbook: Deterring Nuclear Proliferation: The Importance of IAEA Safeguards by Michael D. Rosenthal et al.

Textbook: Nuclear Safeguards, Security, and Nonproliferation: Achieving Security with Technology and Policy by James E. Doyle

Nuclear Safeguards Education Portal

International Atomic Energy Agency

Nuclear Nonproliferation, Safeguards and Security (NSSS) in the 21st Century
Brookhaven National Laboratory
Three-week course in June
Application Deadline: Mid March

International Safeguards Policy and Information Analysis
Monterey Institute of International Studies & Lawrence Livermore National Laboratory
Five-day course in June
Application Deadline: Early March

Nuclear Nonproliferation and International Safeguards
Pacific Northwest National Laboratory
Two 3-day courses in June and July
Application Deadline: Late April

Safeguards Pre-Inspector Course
Idaho National Laboratory
Two-week course in March/April
Application Deadline: Early February

Finally, if you’re interested in becoming more involved in nonproliferation within the American Nuclear Society, check out the Nuclear Nonproliferation Technical Group!

nntg home page logo whitecropped 510x201

_______________________

Lenka_Kollar_casual_small 125x125Lenka Kollar is the Owner & Editor of Nuclear Undone, a blog and consulting company focusing on educating the public about nuclear energy and nonproliferation issues. She is an active ANS member, serving as Secretary of the Nuclear Nonproliferation Technical Group and member of the Professional Women in ANS Committee. Connect with Lenka on LinkedIN and Twitter.

Webinar with NRC Chairman Allison Macfarlane—Thursday, Sept. 11, 9 AM Eastern

The American Nuclear Society will host an online webinar for nuclear bloggers—an unscripted question-&-answer session with Nuclear Regulatory Commission Chairman Allison Macfarlane—on Thursday, September 11, 2014, from 9 AM–10 AM Eastern Time

To register for the webinar, click the ‘Register’ link at:

https://ansbrief.webex.com/ansbrief/onstage/g.php?d=667766847&t=a

How to submit questions

Macfarlane

Macfarlane

Participants in the September 11 session may submit questions ahead of time by sending to Paul Bowersox at the American Nuclear Society. The conference call webinar will be listen-only and facilitator Margaret Harding, ANS Treasurer, will take questions via online webinar chat while the discussion is in progress. Those registrants unable to attend via computer may dial in to listen at the number listed on their registration confirmation.

Harding

Harding

To attend in-person

A limited number of spaces are available for writers to join in person at 2000 M Street, NW, Washington, DC, Conference Room A (basement level). Space is limited to the first 20 respondents.

click to enlarge

flyer snip

 

Nuclear Energy Blog Carnival 223

ferris wheel 202x201The 223rd edition of the Carnival of Nuclear Bloggers has been posted at Next Big Future.  You can click here to access this latest post in a long running tradition among pro-nuclear authors and bloggers.

Each week, a new edition of the Carnival is hosted at one of the top English-language nuclear blogs. This rotating feature of nuclear “posts of the week” represents the dedication of those who are working toward a future of energy abundance, improved health, and broadened security through nuclear science and technology.

Past editions of the carnival have been hosted at Yes Vermont Yankee, Atomic Power Review, ANS Nuclear Cafe, NEI Nuclear Notes, Next Big Future, Atomic Insights, Hiroshima Syndrome, Things Worse Than Nuclear Power, EntrepreNuke, Thorium MSR and Deregulate the Atom.

This is a great collaborative effort that deserves your support.  If you have a pro-nuclear energy blog and would like to host an edition of the carnival, please contact Brain Wang at Next Big Future to get on the rotation.