EPA Proposes Power Sector CO2 Emissions Reduction Plan

By Jim Hopf

DC PerspectivesWith cap-and-trade and carbon tax proposals going nowhere in congress, the Obama administration is tackling the global warming issue through the administrative branch, using U.S. Environmental Protection Agency regulations. In the transport sector, the administration promulgated vehicle fuel efficiency (mileage) standards. In the power sector, the EPA has proposed regulations requiring that all new power plants emit no more CO2 than a typical natural gas plant—thus, any new coal plants would have to employ CO2 sequestration. And now, the EPA is proposing to address CO2 emissions from existing power plants by establishing CO2 emissions reduction requirements for the power sector.

EPA proposed rules

Under the proposed rules, each state would be required to reduce its power sector CO2 emissions rate (in tons of CO2 per MW-hr) by a certain percentage by 2030. Some interim goals will also apply. Details of the plan are described on the EPA’s website.

When establishing the emissions reduction goals for each state, the EPA considered five likely, low-cost means that the states may employ to reduce emissions. These include:

  • Increased thermal efficiency for fossil plants (6 percent average increase assumed for the coal fleet).
  • Increased use of existing gas-fired plants, in place of coal (usage increased to 70 percent).
  • 5.8 GW of new nuclear and continued operation of “at risk” nuclear units.
  • Increased renewable generation (to 13 percent of overall generation by 2030).
  • Electricity conservation (10.7 percent reduction in demand by 2030).

The EPA is not requiring the exact measures described above to be taken by the states. The above assumptions are simply the basis that the EPA used to arrive at “reasonable” emissions rate reduction requirements for various states. They are steps that states are already taking or are planning on taking, or steps that the EPA believes can be taken at very low cost.

The only requirement is the emissions rate (tons CO2/MW-hr) reduction percentage that applies to each state. Each state is free to choose the means by which it will meet the requirement. States are also free to engage in inter-state emissions trading to meet the goals (thus allowing some states to emit more than the goal if other states manage to emit less). Such trading schemes may result in some effective price being put on CO2 emissions.

The emissions reduction requirements for each state are based on the assumption that the five new nuclear reactors under construction in the United States go into operation. They also assume that the ~5.8 percent of U.S. nuclear capacity deemed to be “at risk” continues to operate (i.e., that any necessary steps or incentives to keep them open are taken). Thus, the proposed regulations do provide a tangible incentive to finish the five plants under construction and keep all existing nuclear plant operating. If any nuclear plants close, or if any of the five construction projects are halted, the states in question would be significantly affected, as they would need to find other, significant sources of reductions that were not otherwise planned.

The requirements are also based on an assumption that, on average, natural gas plants in the state that are in operation or currently under construction will operate with a 70 percent capacity factor (vs. ~55 percent now). Thus, they assume that coal generation will be displaced by increased gas generation from any under-utilized gas-fired plants in the state. They do not assume any new gas plant construction (to replace coal), however.

The requirements are also based on the assumption that renewables will increase to 13 percent of generation, mostly based on existing state renewable generation (portfolio) requirements and other state plans. States are also assumed to reduce power demand by 10.7 percent (vs. current projections, using new demand-side management programs). These demand reductions are essentially treated like non-emitting generation, and are part of the quoted percentage emissions reduction for each state.

State requirements

The state requirements are illustrated in the figure below. State by state requirements are also shown in tabular form here. The state requirements are expressed in terms of percentage reductions in tons of CO2 emitted per MW-hr of generation, from 2012 to 2030.

epa carbon reduction goals 480x304

At first look, many of the state requirements seem odd, with states that already have low emissions (like Washington) having significant reduction requirements, while “coal states” like Kentucky and West Virginia have very small reduction requirements. One would think that such coal states would be the most ripe for reductions, mainly by replacing coal plants (especially old inefficient ones) with gas generation. The reason for this is that the EPA requirements are largely based on existing state plans.

For example, Washington is planning on closing the one large coal plant in the state, which is the source of most of the state’s power sector CO2 emissions. The EPA based its reduction requirement on those plans, and is essentially requiring the state to go forward with them.

The reason for the low reduction requirements for Kentucky and West Virginia is that few if any natural gas plants exist in those states. As stated earlier, the EPA did not consider the construction of new gas-fired plants in any states when making its estimates for “feasible” reductions. It only considered increased utilization of existing gas plants within the state.

Another example that stands out is the large (51.4 percent) reduction required for South Carolina. The primary reason for the strict requirement is the two-unit V.C. Summer nuclear project in the state. Those two reactors will result in a significant reduction in state CO2 emissions, and the EPA is essentially requiring that those projects go forward.

Overall national reduction goal

The EPA states that the proposed rules will result in national power sector emissions in 2030 that are 26 percent to 30 percent below 2005 levels. It should be noted that power sector emissions have already fallen ~15 percent between 2005 and 2013. Thus, the policies would actually only decrease emissions by another ~10–15 percent from today.

Even after reading most of the press releases and other documents on the EPA website and elsewhere, I have been unable to determine with certainty if the national reduction quoted above is a 26–30 percent reduction in actual, absolute emissions (in tons per year), or a reduction in emissions per MW-hr generated. The EPA refers to a 26–30 percent reduction in “CO2 emissions” (suggesting an absolute emissions reduction), but all state requirements are given in units of emissions (tons) per MW-hr. Looking over all the tabulated state reduction requirements suggests an average (i.e., national) reduction requirement of ~30 percent, in tons/MW-hr. Could the EPA really be referring to a reduction in per MW-hr emissions when it speaks of “CO2 emissions reductions” (i.e., is it using misleading/evasive language)?

This question is significant, since the U.S. Energy Information Administration projects an increase of ~26 percent in overall U.S. electricity generation between 2012 and 2030. Thus, a ~30 percent reduction in tons/MW-hr would result in ~26 percent more emissions than a ~30 percent reduction in absolute emissions (tons/year). The EPA assumed that states would reduce overall electricity use by 10.7 percent, versus current projections (of a 26 percent increase, presumably). However, those reductions are essentially treated like zero-emissions generation, and are included in the state emissions/MW-hr reduction goals. That is, the required percentage reduction in CO2/MW-hr for the state’s power generation is actually less than that quoted, unless the state fails to reduce demand.

Part of the answer lies in the use of 2005 vs. 2012 as a base year. As discussed above, a 30 percent emissions reduction (in tons/year) from 2005 equates to a reduction of only 10–15 percent from 2012 levels. If one assumes that power generation increases by 26 percent, but the tons of CO2 emitted per MW-hr decreases by 30 percent, the resulting overall emissions, in tons/year, would fall by ~12 percent (which lies within the range of 10–15 percent). Thus, I believe we have our answer. Overall emissions will decrease by 10–15 percent, from now to 2030. Emissions intensity (tons/MW-hr) will decrease by a larger amount (26–30 percent), but overall generation will increase somewhat.

It should be noted, however, that the requirements, as written, only limit emissions intensity and do not actually limit absolute emissions (in tons/year). Thus, if overall power generation increases by more than the expected amount, for whatever reason, absolute CO2 emissions will be allowed to increase accordingly. Any restriction or disincentive on CO2 emissions would not increase in response to increased generation.

Political considerations

The EPA’s proposals appear to be designed to minimize political impacts, in my view. As discussed earlier, many if not most of the proposed “measures” are simply ratification of existing policies and plans, such as planned coal plant closures and state renewables mandates. Any new measures are ones that can be achieved at very low cost.

One of the only new aspects is a requirement to increase gas utilization, vs. coal, but even that measure is only applied to states with spare gas capacity, and not to coal states (which have little such spare gas capacity). The EPA’s argument appears to be that constructing new gas plants (as opposed to simply using existing ones more often) would be too expensive. This argument appears weak, given the very low capital cost of gas capacity. It appears to me to be more of a political sop to the coal-dominated states, perhaps to avoid political resistance to the plan. The proposal is designed so that the impact on power generation in the states most politically opposed to the plan are virtually non-existent.

This appears to be a proposal that has a somewhat limited impact on emissions (relative to other/earlier proposals), but also is known to have very limited economic (and political) impacts. My view is that this is an attempt to get at least some sort of global warming policy established. This will set precedent, and establish the principle that this is something that warrants government action. Once the policy is established, policies that require further/continued reductions may be promulgated in the future, especially if (or when) it is seen that this policy had no significant negative impact on the economy. In any event, this is probably the strongest policy that can be attained right now, given attitudes in congress, and some policy is better than none.

Overall impacts

As discussed above, this proposal appears to be far weaker than other global warming proposals that have been put forward, such as the earlier cap-and-trade bill or various CO2 tax proposals.

The plan is estimated to yield a 30 percent reduction in emissions (vs. 2005) by 2030, from the power sector only (and only 10–15 percent from today). That corresponds to a reduction of just over 10 percent in overall emissions, vs. 2005 (and less than half of that vs. today). That compares to the (Waxman-Markey) cap-and-trade bill requirement of ~20 percent in overall CO2 emissions.

It must be noted that power sector emissions reduction options (e.g., replacing coal with anything else) are among the “lowest hanging fruit” with respect to cost effectiveness. A carbon price of $25–$30 per ton, enough to put many if not most existing coal plants out of business, would only add ~25–30 cents to a gallon of gasoline (i.e., not nearly enough to drive any significant changes in the transport sector). Thus, the old cap-and-trade bill was actually far more significant in terms of impacts and reductions demanded. To get a ~20 percent reduction in overall emissions, the reductions from the power sector would have been far greater than 20 percent (its reduction measures being cheaper than other sectors).

It should be noted that coal is still projected to represent ~30 percent of overall generation in 2030, even under these proposals. Coal formerly was over 50 percent, and recently fell to ~34 percent (in 2012). Now, because natural gas prices have gone back up somewhat, coal is back up to ~40 percent. (Note that, whereas when a nuclear plant closes it’s closed forever, utilities turn mothballed coal plants right back on when they become slightly cheaper to operate than gas, with no consideration of the drastic difference in health and environmental impacts.) Thus, all the proposals are doing is bringing coal back down to where it was a couple years ago with no policy input.

My opinion is that, given that shutting down old coal plants and replacing them with gas (if nothing else) represents one of the least expensive means of emissions reduction, any plan that leaves coal’s generation percentage at 30 percent in 2030 simply isn’t trying hard enough.

Indeed, I believe most of the EPA’s proposed reduction measures discussed earlier are estimated to have costs of only ~$15 per ton of CO2. Most carbon tax proposals involve significantly higher CO2 prices.

Most earlier proposals also required more significant reductions in overall (all sector) emissions by 2030. Those requirements, along with other assumptions such as higher natural gas prices, led to significantly different predicted outcomes, including much lower coal use and much higher nuclear use. I seem to recall one EPA study of a cap-and-trade policy that predicted a nuclear generation share of ~60 percent.

Impacts on nuclear

As stated earlier, the EPA’s policies should be a significant help in assuring that existing nuclear construction projects go forward, and in preventing any more nuclear plant closures, as these are the assumptions “baked into” the emissions requirements for each state. Whether or not the policy will stimulate any additional nuclear construction is far less clear.

The emissions goals for each state were based on current plans and additional measures estimated to cost ~$15/ton of CO2. A CO2 price of ~$15/ton is certainly not enough to stimulate much in the way of new nuclear plant construction, although it is probably enough to keep existing plants open. While larger emissions reductions would require higher costs (CO2 prices), the EPA’s analysis and proposals do seem to show that significant reductions can be achieved at very modest costs (and through mere continuation of existing plans and policies); something that is somewhat disconcerting with respect to new nuclear plant prospects.

Perhaps the main impact of the proposed policy, both on nuclear and in general, is that it cements current plans and policies, and prevents any back-tracking. The most significant example of this concerns the use of gas vs. coal. Without the policy, utilities will go right back to coal if the cost of natural gas rises. The EPA policies will essentially disallow switching back from gas to coal, and will instead require some further replacement of coal with gas. We’ve already back-tracked from 34 percent coal use back to ~40 percent. The EPA policies will drive coal use back down to ~30 percent. And they will do so even if natural gas prices rise in the future; a very important point.

That last point is probably the most significant in terms of whether the EPA’s proposed policy will ever result in new nuclear construction projects. If the price of natural gas increases significantly in the future, nuclear may become competitive. The EPA policies would prevent shifting back to coal as an alternative to new nuclear (or renewable) capacity. Preventing a shift back to coal would also tend to keep gas prices up, as a shift back to coal would no longer act as a means of limiting gas demand. On the other hand, if the price of natural gas remains low, the proposed EPA policies would do little, if anything, to stimulate new nuclear construction, in lieu of just using more gas.

Call to action

Another option for increasing the odds of new nuclear plant construction would be to argue for policies that treat all non-CO2-emitting sources the same. As the EPA is leaving it up to each state to determine how to comply with the proposed rules, such policies would most likely be set at the state level. The state emissions goals are based on the continuation of existing renewable generation requirements and plans, and renewables accounting for 13 percent of overall national generation in 2030. The states are free to use nuclear, in lieu of renewables, for some of that generation under the EPA policy.

This is an area where the American Nuclear Society, nuclear engineers, and nuclear advocates need to get involved. The EPA’s proposed rules are now out for public comment. Also, states are beginning to develop plans for how they will respond to the emissions reduction requirements. Nuclear experts and advocates need to make the case for a technology-neutral approach. Certainly, we should advocate neutrality for any new state policies. Cap-and-trade systems in lieu of portfolio standards are also something we could argue for. Revision of existing state renewable portfolio standards to include nuclear (in order to reduce compliance costs) would be a bit more difficult to achieve, but is still worth pursuing.

_________________

Hopf

Hopf

Jim Hopf is a senior nuclear engineer with more than 20 years of experience in shielding and criticality analysis and design for spent fuel dry storage and transportation systems. He has been involved in nuclear advocacy for 10+ years, and is a member of the ANS Public Information Committee. He is a regular contributor to the ANS Nuclear Cafe.

Columbia Generating Station Sets New Generation Record

By Laura Scheele

Ratepayers in the Pacific Northwest have reason to celebrate the dedicated employees of Energy Northwest’s 1170-megawatt Columbia Generating Station:  The Northwest’s sole nuclear energy facility generated a record 9.7 million megawatt hours of electricity during the fiscal year that ended Monday, June 30—eclipsing a previous record of 9.5 million megawatt hours in fiscal year 2006.

This generation mark has been set with safety and efficiency, as well as adherence to the core principles of the organization’s Excellence Model. The Columbia Generating Station has operated more than 4.5 years without an unplanned shutdown, and Energy Northwest has surpassed 14 million work-hours without lost time due to injury.

“This performance is a testament to the organization’s alignment to the Excellence Model and commitment to fixing plant equipment and demonstrating the right behaviors,” said Brad Sawatzke, vice president of nuclear generation, in a message to employees. “Most importantly, the team reached this milestone while performing safely in the areas of nuclear, radiological, industrial and environmental safety.”

In a broader context, the 100 commercial nuclear energy reactors operating in the United States have continued to maintain their overall share of U.S. electricity generation through great improvements in efficiency and performance over recent decades, as well as massive additional capacity added through power uprates—for more on uprates in detail see Nuclear power uprates: what, how, when, and will there be more? at ANS Nuclear Cafe.

For more on the story see Energy Northwest near Richland sets new megawatt record. For more on Columbia Generating Station at ANS Nuclear Cafe see this Nuclear Matinee double-feature from February of this year.

columbia generating station 400x262

About Energy Northwest 
Energy Northwest develops, owns, and operates a diverse mix of electricity generating resources, including hydro, solar, and wind projects—and Columbia Generating Station (pictured above), the Northwest’s only nuclear power plant. These projects provide enough reliable, affordable, and environmentally responsible energy to power more than a million homes each year, and that carbon-free electricity is provided at the cost of generation.

As a Washington state, not-for-profit joint operating agency, Energy Northwest comprises 27 public power member utilities from across the state serving more than 1.5 million ratepayers. The agency continually explores new generation projects to meet its members’ needs.
____________________

laura-scheeleLaura Scheele is a Senior Public Affairs Analyst and Member Relations Manager at Energy Northwest, a not-for-profit joint operating agency headquartered in Richland, Washington. She is an active board member of the ANS Eastern Washington Local Section.

 

Nuclear professionals: Establish standing now to improve operational radiation limits

By Rod Adams

On August 3, 2014, the window will close on a rare opportunity to use the political process to strongly support the use of science to establish radiation protection regulations. Though it is not terribly difficult for existing light water reactors and fuel cycle facilities to meet the existing limits from 40 CFR 190 regarding doses to the general public and annual release rate limits for specific isotopes, there is no scientific basis for the current limits. If they are maintained, it would hinder the deployment of many potentially valuable technologies that could help humanity achieve a growing level of prosperity while achieving substantial reductions in air pollution and persistent greenhouse gases like CO2.

In January 2014, the U.S. Environmental Protection Agency issued an Advanced Notice of Proposed Rulemaking (ANPR) to solicit comments from the general public and affected stakeholders about 40 CFR 190, Environmental Radiation Protection Standards for Nuclear Power Operations.

The ANPR page has links to summary webinars provided to the public during the spring of 2014, including presentation slides, presentation audio, and questions and answers. This is an important opportunity for members of the public, nuclear energy professionals, nuclear technical societies, and companies involved in various aspects of the nuclear fuel cycle to provide comments about the current regulations and recommendations for improvements. Providing comments now, in the information-gathering phase of a potential rulemaking process, is a critical component of establishing standing to continue participating in the process.

us epa logo no text 214x201It also avoids a situation where an onerous rule could be issued and enforced under the regulator’s principle that “we provided an opportunity for comment, but no one complained then.”

The existing version of 40 CFR 190—issued on January 13, 1977, during the last week of the Gerald Ford administration—established a limit of 0.25 mSv/year whole body dose and 0.75 mSv/year to the thyroid for any member of the general public from radiation coming from any part of the nuclear fuel cycle, with the exception of uranium mining and long-term waste disposal. Those two activities are covered under different regulations. Naturally occurring radioactive material is not covered by 40 CFR 190, nor are exposures from medical procedures.

40 CFR 190 also specifies annual emissions limits for the entire fuel cycle for three specific radionuclides for each gigawatt-year of nuclear generated electricity: krypton-85 (50,000 curies), iodine-129 (5 millicuries), and Pu-239 and other alpha emitters with longer than one year half-life (0.5 millicuries).

It is important to clarify the way that the U.S. federal government assigns responsibilities for radiation protection standards. The Nuclear Regulatory Commission has the responsibility for regulating individual facilities and for establishing radiation protection standards for workers, but the EPA has a role and an office of radiation protection as well.

The Atomic Energy Act of 1954 initially assigned all regulation relating to nuclear energy and radiation to the Atomic Energy Commission (AEC). However, as part of the President’s Reorganization Plan No. 3 of October 1970, President Nixon transferred responsibility for establishing generally applicable environmental radiation protection standards from the AEC to the newly formed EPA:

…to the extent that such functions of the Commission consist of establishing generally applicable environmental standards for the protection of the general environment from radioactive material. As used herein, standards mean limits on radiation exposures or levels or concentrations or quantities of radioactive material, in the general environment outside the boundaries of locations under the control of persons possessing or using radioactive material.

(Final Environmental Impact Statement, Environmental Radiation Protection Requirements for Normal Operations of Activities in the Uranium Fuel Cycle, p. 18.)

Before the transfer of environmental radiation responsibilities from the AEC to the EPA, and until the EPA issued the new rule in 1977, the annual radiation dose limit for a member of the general public from nuclear fuel cycle operations was 5 mSv—20 times higher than the EPA’s limit.

The AEC had conservatively assigned a limit of 1/10th of the 50 mSv/year applied to occupational radiation workers, which it had, in turn, conservatively chosen to provide a high level of worker protection from the potential negative health effects of atomic radiation.

The AEC’s occupational limit of 50 mSv was less than 1/10th of the previously applied “tolerance dose” of 2 mSv/day, which worked out to an annual limit of approximately 700 mSv/year. That daily limit recognized the observed effect that damage resulting from radiation doses was routinely repaired by normal physiological healing mechanisms.

Aside: After more than 100 years of human experience working with radiation and radioactive materials, there is still no data that prove negative health effects for people whose exposures have been maintained within the above tolerance dose, initially established for radiology workers in 1934. End Aside.

From the 1934 tolerance dose to the EPA limit specified in 1977 (and still in effect), requirements were tightened by a factor of 2800. The claimed basis for that large conservatism was a lack of data at low doses, leading to uncertainty about radiation health effects on humans. Based on reports from the National Academy of Sciences subcommittee on the Biological Effect of Ionizing Radiation (BEIR), the EPA rule writers simply assumed that every dose of radiation was hazardous to human health.

The EPA used that assumption to justify setting limits that were quite low, but could be met by the existing technology if it was maintained in a like-new condition for its entire operating life. Since the rule writers assumed that they were establishing a standard that would protect the public from an actual harm, they did not worry about the amount of effort that would be expended in surveys and monitoring to prove compliance. As gleaned from the public webinar questions and answers, EPA representatives do not even ask about compliance costs, because they are only given the responsibility of establishing the general rule; the NRC is responsible for inspections and monitoring enforcement of the standard.

The primary measured human health effects used by the BEIR committee in formulating their regulatory recommendations were determined based on epidemiological studies of atomic bomb survivors. That unique population was exposed to almost instantaneous doses greater than 100 mSv. Based on their interpretation of data from the Life Span Study of atomic bomb victims, which supported a linear relationship between dose and effect in the dose regions available, the BEIR committee recommended a conservative assumption that the linear relationship continued all the way down to a zero dose, zero effect origin.

For the radionuclide emissions limits, the EPA chose numbers that stretch the linear no-threshold dose assumption by applying it to extremely small doses spread to a very large population.

The Kr-85 standard is illustrative of this stretching. It took several hours of digging through the 240-page final environmental impact statement and the nearly 400-page collection of comments and responses to determine exactly what dose the EPA was seeking to limit decades ago, and how much it thought the industry should spend to achieve that protection.

The EPA determined that allowing the industry to continue its then-established practice of venting Kr-85 and allowing that inert gas to disperse posed an unacceptable risk to the world’s population.

It calculated that if no effort was made to contain Kr-85, and the U.S. industry grew to a projected 1000 GW of electricity production by 2000, an industry with full recycling would release enough radioactive Kr-85 gas to cause about 100 cases of cancer each year.

The EPA’s calculation was based on a world population of 5 billion people exposed to an average of 0.0004 mSv/year per individual.

At the time that this analysis was performed, the Barnwell nuclear fuel reprocessing facility was under construction and nearly complete. It had not been designed to contain Kr-85. The facility owners provided an estimate to the EPA that retrofitting a cryogenic capture and storage capability for Kr-85 would cost $44.6 million.

The EPA finessed this exceedingly large cost for tiny assumed benefit by saying that the estimated cost for the Barnwell facility was not representative of what it would cost other facilities that were designed to optimize the cost of Kr-85 capture. It based that assertion on the fact that Exxon Nuclear Fuels was in a conceptual design phase for a reprocessing facility and had determined that it might be able to include Kr-85 capture for less than half of the Barnwell estimate.

GE, the company that built the Midwest Fuel Recovery Plant in Morris, Illinois, provided several comments to the EPA, including one about the low cost-benefit ratio of attempting to impose controls on Kr-85:

Comment: The model used to determine the total population dose should have a cutoff point (generally considered to be less than 0.01 mSv/year) below which the radiation dose to individuals is small enough to be ignored.

In particular, holdup of krypton-85 is not justified since the average total body dose rate by the year 2000 is expected to be only 0.0004 mSv/year.

Response: Radiation doses caused by man’s activities are additive to the natural radiation background of about 0.8-1.0 mSv/year [note: the generally accepted range of background radiation in the mid 1970s, as indicated by other parts of the documents was 0.6 - 3.0 mSv/yr] whole-body dose to which everyone is exposed. It is extremely unlikely that there is an abrupt discontinuity in the dose-effect relationship, whatever its shape or slope. at the dose level represented by the natural background that would be required to justify a conclusion that some small additional radiation dose caused by man’s activities can be considered harmless and may be reasonably ignored.

For this reason, it is appropriate to sum small doses delivered to large population groups to determine the integrated population dose. The integrated population dose may then be used to calculate potential health effects to assist in making judgements on the risk resulting from radioactive effluent releases from uranium fuel cycle facilities, and the reasonableness of costs that would be incurred to mitigate this risk.

Existing Kr-85 rules are thus based on collective doses, and a calculation of risks, that is now specifically discouraged by both national (NCRP) and international (ICRP) radiation protection bodies. It is also based on the assumption of a full-recycle fuel system and 10 times as much nuclear power generating capacity as exists in the United States today.

Since the level specified is applied to the entire nuclear fuel cycle industry in the United States, the 40 CFR 190 ANPR asks the public to comment about the implications of attempting to apply limits to individual facilities. This portion of the discussion is important for molten salt reactor technology that does not include fuel cladding to seal fission product gases, and for fuel cycles that envision on-site recycling using a technology like pyroprocessing instead of transporting used fuel to a centralized facility for recycling.

There are many more facets of the existing rule that are worthy of comment, but one more worth particular attention is the concluding paragraph from the underlying policy for radiation protection, which is found on the last page of the final environmental impact statement:

The linear hypothesis by itself precludes the development of acceptable levels of risk based solely on health considerations. Therefore, in establishing radiation protection positions, the Agency will weigh not only the health impact, but also social, economic, and other considerations associated with the activities addressed.

In 1977, there was no consideration given to the fact that any power that was not generated using a uranium or thorium fuel cycle had a good chance of being generated by a power source producing a much higher level of carbon dioxide. In fact, the EPA in 1977 had not even begun to consider that CO2 was a problem. That “other consideration” must now play a role in any future decision-making about radiation limits or emission limits for radioactive noble gases.

If EPA bureaucrats are constrained to use the recommendations of a duly constituted body of scientists as the basis for writing its regulations, the least they could do before rewriting the rules is to ask the scientific community to determine if the linear no-threshold (LNT) dose response model is still valid. The last BEIR committee report is now close to 10 years old. The studies on which it was based were conducted during an era in which it was nearly impossible to conduct detailed studies of DNA, but that limitation has now been overcome by advances in biotechnology. There is also a well-developed community of specialists in dose response studies that have produced a growing body of evidence supporting the conclusion that the LNT is not “conservative”—it is simply incorrect.

Note: Dose rates from the original documents have been converted into SI units.

epa sign 313x201


Adams

Adams

Rod Adams is a nuclear advocate with extensive small nuclear plant operating experience. Adams is a former engineer officer, USS Von Steuben. He is the host and producer of The Atomic Show Podcast. Adams has been an ANS member since 2005. He writes about nuclear technology at his own blog, Atomic Insights.

Nuclear Energy Blog Carnival 217

ferris wheel 202x201The 217th edition of the Nuclear Blog and Author Carnival has been posted at Next Big Future.  You can click here to access this latest installment in a long running tradition among the world’s top pro-nuclear authors and bloggers.

Each week, a new edition of the Carnival is hosted at one of the top English-language nuclear blogs. This rotating feature of nuclear “posts of the week” represents the dedication of those who are working toward a future of energy abundance, improved health, and broadened security through nuclear science and technology.

Past editions of the carnival have been hosted at Yes Vermont Yankee, Atomic Power Review, ANS Nuclear Cafe, NEI Nuclear Notes, Next Big Future, Atomic Insights, Hiroshima Syndrome, Things Worse Than Nuclear Power, EntrepreNuke, Thorium MSR and Deregulate the Atom.

This is a great collaborative effort that deserves your support.  If you have a pro-nuclear energy blog and would like to host an edition of the carnival, please contact Brain Wang at Next Big Future to get on the rotation.

Nuclear Video Matinee: Vogtle Nuclear Construction Update

Near Augusta, Georgia, the first new commercial nuclear power reactors under construction in the United States in 30 years continue to “go vertical.”  Take an inside look at the latest from the Vogtle-3 and -4 construction site, including placement of the 1.8 million pound containment vessel bottom head for Unit 4, the cooling tower for Unit 3 surpassing 300 feet, and a very interesting visit to the Port of Savannah where many of the most massive Vogtle components arrive via ship.

Thanks to Georgia Power YouTube for sharing this construction update.

vogtle tower 387x201

Nuclear Energy in Japan Steps into the Chasm

by Will Davis

Recent developments in Japan concerning the Fukushima Daiichi plant recovery specifically, and nuclear energy generally, have not been exceedingly positive. The difficult recovery efforts at the crippled nuclear plant are not all proceeding smoothly; delays and technical problems continue to abound and confound. Meanwhile, on a broader scale, the national pullback from nuclear may be even more serious and have longer term effects than anyone realizes.

Fukushima Daiichi Units 5 and 6, courtesy TEPCO

Fukushima Daiichi Units 5 and 6, courtesy TEPCO

Fukushima Daiichi—Where is the ice wall?

Tokyo Electric Power Company (TEPCO) reported that efforts to block the flow of water through below-grade piping conduits have failed, largely because the currents in these conduits are fast enough that the water cannot freeze. Sealing these “trenches”—a separate issue from the “ice wall” discussed below—is a major part of the contaminated water mitigation process; it is what will, ultimately, prevent contaminated water that is inside the nuclear plant buildings (reactor buildings and turbine buildings) from getting out into the general grounds near the plants. At this writing, no solution has been devised, although TEPCO hopes to better control the currents and/or add more coolant pipes if needed.

Similarly, TEPCO also repeatedly delayed the expected completion date for the “frozen earth” ice wall that will surround Units 1 through 4 underground, which will prevent groundwater from intruding into the buildings. Japan’s Nuclear Regulation Authority (NRA) has publicly expressed concern over the delay in this process, urging TEPCO to attack the problem with utmost vigor. According to reporting from NHK (Japan’s national public broadcasting organization), the NRA has urged TEPCO to come up with definite steps by the end of July to ensure a timely completion of the ice wall.

Click here to see a video covering the ice wall verification test

TEPCO continues to have the “to be expected” occasional system problem here and there, but since the general public’s attitude toward TEPCO is definitely not one of trust and understanding, all events make for wide and negative press. Early this week, TEPCO temporarily lost cooling to the spent fuel pool at Unit 5 on the Fukushima Daiichi site. To make matters worse in the public eye, original statements made to NHK/NHK World (which have now been removed from their sites) indicated that TEPCO had no clue when cooling could be restored, and that the pool would hit its operating temperature limit in a few weeks.

The truth of the matter is that the very next day, the residual heat removal system was placed in service to restore spent fuel pool cooling. But the shaky initial message had already gone out, with a seemingly powerless undertone that certainly didn’t underscore the ability of those at site to deal with the situations they encounter (TEPCO has since released a detailed account of this incident).

On the positive side, as of this writing 1188 out of the 1533 fuel elements in the spent fuel pool at Unit 4 have been transferred to the site’s common fuel pool. Future operations will see some of this fuel also transferred to the Unit 5 spent fuel pool.

Fukushima Daiichi site common spent fuel pool; courtesy TEPCO

Fukushima Daiichi site common spent fuel pool; courtesy TEPCO

Restarting plants might be slow

In a completely separate development, a Fukui court has blocked the restart of two units at Kansai Electric Power Company’s Ohi Nuclear Power Plant, citing in part that the plant had operated from July 2012 to September 2013 without incorporating new or revised safety standards. What relevance this has to the restarting of a plant now completely meeting the revised NRA standards is unclear, but the precedent is set: Courts are ready and willing to act to counter the Japanese government’s mission to restore the Japanese economy by restarting nuclear plants.

Eventually, it does seem certain that many of the nuclear plants in Japan will restart, as the need becomes increasingly critical to improve Japan’s import-export ratio and drive down the cost of energy. The Japanese government, the utilities, and most major corporations (and their lobbying groups) have expressed the desire to restart the plants; at the same time, however, local and highly vocal groups are speaking out and taking legal action.

Separately, Japan’s NRA has publicly made some severe comments after finding a number of inadequacies in early applications to restart plants submitted by a number of owner-operators. According to the NRA, further requests for information and clarification will be necessary—driving the potential restart dates for even the earliest expected plant restart (Sendai) beyond the high demand period of the summer heat. Sendai is still expected to be the first to restart, though—perhaps as soon as the autumn months.

Conceptual illustration, Ohma Nuclear Power Plant; courtesy J-Power

Conceptual illustration, Ohma Nuclear Power Plant; courtesy J-Power

The “chasm”

At the tip of Aomori Prefecture lies the site of what is now the only nuclear power plant actively under construction in Japan—the Ohma Nuclear Plant, owned by Electric Power Development Company, Ltd., commonly known as “J-Power.”

That’s right—this is the only nuclear plant in Japan actively under construction. After the earthquake and tsunami in 2011, all nuclear plant construction was effectively halted in Japan. Of the three that were under construction, two were deferred indefinitely; of the 12 announced or proposed, all were deferred indefinitely or cancelled.

The plant near Ohma—an Hitachi advanced boiling water reactor—has been “on the drawing boards” for many years and was several times deferred. First planned in the early 1980s (the site survey was accomplished in 1983), the plant’s site preparation didn’t begin until 2008, with actual plant construction beginning in 2010, but suspended from the time of the 2011 quake until October 2012 when it was resumed. As might have been expected, anti-nuclear opponents have taken the Fukui court finding as a precedent and have now acted to block completion of the Ohma nuclear plant as well. It appears an extended court battle may now be in the offing.

This portends a “nuclear chasm,” similar to what we now face in the United States. The cessation of new nuclear plant orders in the U.S. in 1978, coupled with a flood of nuclear plant cancellations that followed, means there will come a time when nuclear plants in the United States are shutting down and decommissioning—even including life extensions—faster than new nuclear plants come on-line.  The nuclear industry has long known this would occur; but it is being accelerated in some quarters by economic conditions (e.g., Kewaunee) or unanticipated material conditions (e.g., Crystal River, San Onofre-2 and -3.)

The result in the case of Japan will be that there too will come a time when, assuming that many plants restart, there will be no new plants in the wings to take the place of the older plants when they shut down. The present social environment in Japan now approaches the atmosphere in the United States during the 1970s and ’80s, with continuous anti-nuclear “environmentalist” opposition that can kill a nuclear energy project. This does not bode well for a nation that imports more than two-thirds of its energy needs; it requires a careful and sober analysis of the nation’s energy needs—and the place that nuclear power plays in those needs—now before the chasm cannot be escaped. Japan, unlike the United States, cannot fall back on indigenous coal or gas—it has neither.

The actions of the Japanese utilities lately have done little to steer away from the road to the chasm; harsh words from the NRA about inadequacies in the initial round of restart applications bears witness to this. Public trust is key, and if it is perceived that utilities wish to simply “slide by and play along” until they get their nuclear plants back—they won’t get them back.

Time will tell what plays out for Japan’s nuclear energy enterprise, but at the moment a great deal of work needs to be done to swing the course away from an abyss.

___________________

SavannahWillinControlRoomWill Davis is the Communications Director for the N/S Savannah Association, Inc. where he also serves as historian and as a member of the board of directors. Davis has recently been engaged by the Global America Business Institute as a consultant.  He is also a consultant to, and writer for, the American Nuclear Society; an active ANS member, he is serving on the ANS Communications Committee 2013–2016. In addition, he is a contributing author for Fuel Cycle Week, and writes his own popular blog Atomic Power Review. Davis is a former US Navy reactor operator, qualified on S8G and S5W plants.

Nuclear Museum Photo Competition and Exhibition!

A quick note about an interesting contest going on at the National Museum of Nuclear Science & History in Albuquerque, New Mexico.

All are invited to share their photographic talent and eye for everything that is science, technology, engineering, art, and mathematics (STEaM) with the ”Atomic STEaM Photography Show.” Any individual, from a professional photographer to a student with a camera phone, may submit photographs for this art exhibition. All winning entries will debut at the National Museum of Nuclear Science & History from November 8, 2014, through January 4, 2015.

Contestants can win a sizable cash prize and also have their work on display in a nationally accredited, Smithsonian-affiliated museum. Each entry fee is $15, and there is no limit to the number of entries an individual can submit. Although all photographs must relate in some way to the overall theme of science, technology, engineering, art, and mathematics, they are of course open to interpretation by the photographer. Entries are now being accepted online, with an entry deadline of August 29—visit the museum’s contest page for more details.

nif preamplifiers 300x200

Nuclear Energy Blog Carnival 216

ferris wheel 202x201The 216th edition of the Carnival of Nuclear Bloggers and Authors is posted at Next Big Future.  You can click here to view this latest installment of a long running tradition among pro-nuclear authors and bloggers.

Each week, a new edition of the Carnival is hosted at one of the top English-language nuclear blogs. This rotating feature of nuclear “posts of the week” represents the dedication of those who are working toward a future of energy abundance, improved health, and broadened security through nuclear science and technology.

Past editions of the carnival have been hosted at Yes Vermont Yankee, Atomic Power Review, ANS Nuclear Cafe, NEI Nuclear Notes, Next Big Future, Atomic Insights, Hiroshima Syndrome, Things Worse Than Nuclear Power, EntrepreNuke, Thorium MSR and Deregulate the Atom.

This is a great collaborative effort that deserves your support.  If you have a pro-nuclear energy blog and would like to host an edition of the carnival, please contact Brain Wang at Next Big Future to get on the rotation.

Caught in the Leadership Paradox: Insight from Admiral Rickover

By Paul E. Cantonwine

Recent scandals at the U.S. Department of Veterans Affairs (VA) and General Motors (GM) have struck a chord with the media and the American people because they represent the worst in bureaucracies—where the lives of individuals seem to get lost in the bureaucratic woods. In the case of the VA, lying about wait times blocked pathways for care and potentially resulted in the early deaths of some veterans. In the case of GM, the bureaucracy put horse blinders on its employees so that they couldn’t recognize the safety significance of ignition switch problems linked to at least 13 deaths.

While it is the nature of organizations to have leaders responsible for directing or dictating from the top down, it is also true that accomplishment only occurs through individual action. Thus, the Leadership Paradox is that while a leader is responsible for the actions of the organization, the actions occur from the individual decisions of those who follow. Organizational scandals, then, are usually a result of a leader’s failure in responding to the Leadership Paradox.

The Leadership Paradox and Admiral Rickover

Hyman_Rickover_1955 155x200To provide some insight into the current problems at GM and the VA, consider the thought of the greatest military engineer and government bureaucrat in U.S. history: Admiral Hyman George Rickover (1900–1986). Admiral Rickover served more than 60 years of active military duty in the U.S. Navy—longer than anyone in our history. He is known as the Father of the Nuclear Navy, and for 34 years he led the organization that developed the pressurized water reactor technology that propels our nuclear Navy and provides about 14 percent of U.S. electricity (boiling water reactors provide an additional 6 percent, approximately).

Admiral Rickover’s approach to the never-ending challenge of the Leadership Paradox was to create an organization made up of professionals. As a leader he then only had to “manage” the standards used in decision-making by the individuals rather than each individual decision. Rickover shaped the culture of his organization, the Naval Nuclear Propulsion Program, by fostering excellence and professionalism.

Professionalism and responsibility

Professionalism occurs when individuals act in the best interest of those being served according to objective values and ethical norms, even when an action is perceived to not be in the best interest of the individual or their organization. That is, there are times when professionals must sacrifice their own interest (or that of their organization) to meet the objective values and ethical norms of the profession. Professionals, in this sense, are serving something greater than the bureaucratic organization that employs them.

If Admiral Rickover had a mantra to shape a professional culture, it would have been, “I am personally responsible.” As a leader, Rickover felt personally responsible for every aspect of his organization, and he instilled this value in everyone working in the organization. In 1961 during Congressional testimony he put it this way: “Responsibility is a unique concept; it may only reside and inhere in a single individual. You may share it with others, but your portion is not diminished. You may delegate it, but it is still with you. You may disclaim it, but you cannot divest yourself of it. Even if you do not recognize it or admit its presence, you cannot escape it. If responsibility is rightfully yours, no evasion, ignorance, or passing the blame can shift the burden to someone else. Unless you can point your finger at the man who is responsible when something goes wrong, then you have never had anyone really responsible.”

rickover2 310x201For everyone in the organization to feel personally responsible, a leader has to act personally responsible. Actions really do speak louder than words.  For Rickover, this meant sometimes getting into the details, because he recognized the truism that the devil is always in the details. His mechanism for keeping an eye on the details was through communications from the bottom up that were called “the pinks.” The pinks referred to the pink carbon copy version of letters that he required people, throughout his organization, to write weekly about problems in their areas of responsibility. These pinks provided Rickover a pulse of his organization’s health and were a way to bypass bureaucratic structure to communicate problems. If he thought a problem was significant, he would hold those responsible accountable on Monday.

Personalizing safety and facing the facts

Other ways Rickover fostered professionalism was to personalize safety and to promote facing the facts to avoid “hoping for the best” when evidence suggested the contrary was a possibility. To personalize safety, Rickover was well known for ending technical debates with anecdotes to support the more conservative decision. One famous story is from a meeting discussing the technical merits of sealing the reactor head to the pressure vessel with a gasket/bolt design, versus using a more conservative design that used both a gasket/bolt and a weld. When the team initially recommended the gasket/bolt design, Rickover made his point about conservatism in design by asking the technical team to consider the question: “What would you do if your son was a sailor on this ship?” Thinking about safety in these personal terms highlighted the interests of those being served (the sailors) over the interests of the organization (to minimize cost), and led the team to change their recommendation to the more conservative design.

To help his organization face the facts, Rickover encouraged open debates that were void of any sense of organizational status. He once put it this way: “Free discussion requires an atmosphere unembarrassed by any suggestion of authority or even respect. If a subordinate always agrees with his superior he is a useless part of the organization.”

In our highly civilized society, bureaucratic organizations are absolutely critical to the delivery of goods and services that make life possible. GM and the VA both provide an important service to the United States. But when the purpose of an organization becomes the self-interest of the organization, professionalism within the organization is compromised and decisions are no longer made in the best interest of those being served. Like Admiral Rickover before, the leaders of bureaucracies like GM and the VA must recognize that the best response to the Leadership Paradox is to promote true professionalism among the individuals working within their organizations. For good or for bad, it is individuals who make things happen.

________________________

cantonwine 110x154Paul E. Cantonwine is a practicing engineer and editor/compiler of The Never-Ending Challenge of Engineering: Admiral H.G. Rickover in His Own Words (ANS 2014). The book is highly recommended for everyone interested in engineering, effective leadership, and nuclear history and is available at the ANS Store.

Communicating Nuclear Energy Forward

By Lenka Kollar

The Focus on Communications Workshop held on June 19 at the 2014 American Nuclear Society Annual Meeting posed the question: “What will it take to move nuclear energy forward?” Mimi Limbach of the Potomac Communications Group covered some very interesting poll data and facilitated a conversation on how to move nuclear energy forward through effective communication.

According to a recent poll by Bisconti Research, Inc., the percentage of the U.S. public in favor of nuclear energy dropped from 69 percent to 63 percent in the past year. This drop may have occurred because nuclear energy has not been a part of the national conversation. In order to address this, Limbach urges outreach efforts that target those who are undecided about nuclear energy. About 56 percent of women and 41 percent of men are in this undecided category. The polls also show that people care about reliable electricity, affordable electricity, and clean air—these are messages that resonate when reaching out to the public.

Limbach says, “It’s time to get nuclear back in the conversation,” and the following are examples of good messages to do this:

  • Investments in new nuclear plants mean good-paying jobs.
  • Investments in nuclear science mean increased U.S. competitiveness.
  • Electricity from nuclear energy powers our economy and lives.
  • When gas lines and coal piles are frozen, nuclear energy reliably and efficiently produces electricity night and day.
  • Nuclear energy is clean air energy.

In addition to making outreach message-focused, Limbach also states that communications should be kept simple and to the point. Use plain English and don’t use jargon. For example, people do not understand radiation units. Even “passive safety” can be confusing because it implies that nothing happens to a reactor after an accident—rather, explain that safety systems are powered by natural forces, and consider replacing the term with “natural safety.”

Memes and infographics have become powerful tools for spreading information (good or bad) on the Internet. When illustrating technical topics, such as radiation and nuclear energy, simple and cool-colored graphics work best. They should be engaging, fun, and easy to read. PopAtomic Studios and the Nuclear Literacy Project have great graphics for anyone to use on social media and other communication platforms, such as:

Footprint 300x393

Meme1 300x300

meme2 300x148

The new Clean Power Plan rule proposed by the U.S. Environmental Protection Agency gives us a chance to get nuclear energy back in the conversation on the state and federal levels. Our messages should be focused on how keeping current nuclear power plants running, and building new ones, can help states meet clean energy goals. Nuclear power plants create jobs and reliable electricity while keeping our air clean. Having a robust domestic nuclear energy program also helps the United States stay at the forefront of the growing international nuclear energy industry and the international nonproliferation regime.

__________________

Lenka_Kollar_casual_small 125x125Lenka Kollar is the Owner & Editor of Nuclear Undone, a blog and consulting company focusing on educating the public about nuclear energy and nonproliferation issues. She is an active ANS member, serving as Secretary of the Nuclear Nonproliferation Technical Group and member of the Professional Women in ANS Committee. Connect with Lenka on LinkedIn and Twitter.

Nuclear Energy Blogger Carnival 215

ferris wheel 202x201The 215th edition of the Carnival of Nuclear Bloggers and Authors has been posted at The Hiroshima Syndrome.  You can click here to access this latest installment of a long running tradition among pro-nuclear authors and bloggers.

Each week, a new edition of the Carnival is hosted at one of the top English-language nuclear blogs. This rotating feature of nuclear “posts of the week” represents the dedication of those who are working toward a future of energy abundance, improved health, and broadened security through nuclear science and technology.

Past editions of the carnival have been hosted at Yes Vermont Yankee, Atomic Power Review, ANS Nuclear Cafe, NEI Nuclear Notes, Next Big Future, Atomic Insights, Hiroshima Syndrome, Things Worse Than Nuclear Power, EntrepreNuke, Thorium MSR and Deregulate the Atom.

This is a great collaborative effort that deserves your support.  If you have a pro-nuclear energy blog and would like to host an edition of the carnival, please contact Brain Wang at Next Big Future to get on the rotation.

Nuclear Power Uprates: What, how, when, and will there be more?

Calvert Cliffs Plant; two unit nuclear generating station.  Baltimore Gas and Electric Company brochure, October 1980.

Calvert Cliffs Plant; two unit nuclear generating station. Baltimore Gas and Electric Company brochure, October 1980.

By Will Davis

I received an email this morning (in the midst of my daily avalanche of promotional emails) with a link to a brief story about uprating of nuclear plants worldwide (in other words, increasing the power output of an already-built plant)—what had been done, how many were planned, and so forth. I wondered to myself just how many nuclear plants in the United States had been uprated, and when they started—and given the recent hullabaloo over the recent U.S. Environmental Protection Agency CO2 emission policy, it seems like (in addition to discussing small modular reactors) we might also want to toss the uprate card back on the table. Instead of flat or only slightly rising demand for electricity, we may face a steady lowering of generating capacity as plants that are high CO2 emitters (and thus violators) get shut down. Sure, renewables will play a part, and so will increased efficiency, but having more power is better than having less, or too little. I found no quick and easy reference for the kind of analysis I wanted, so I took a little time and did it myself.

Uprate? You can do that? How?

Power Meters NS Savannah 2Yes, uprates can be done—and it’s been happening for a long time. In nuclear power we talk about three kinds of uprates, or increases in power outputs, for the power plants. Very briefly, these are as follows, in increasing order of the amount of power gained:

  • MUR or “Measurement Uncertainty Recapture”: Think about this as saying that we’re going to put more accurate instruments into a plant, and thus will be able to develop a very slightly (maybe 1 percent or so) higher power now that we’re more certain of the exact parameters. Originally, it turns out, the instruments built for nuclear plants years back were quite accurate—so that these types of uprates are typically small. For all you “car nuts” out there, think “police speedometer.” (Do they even sell “police package” cars any more? My father had a Caprice LTZ… but I digress.)
  • “Stretch”: This uprate uses the installed equipment to a higher degree of its maximum capability. These are a few to several percent power increases.
  • “Extended Power Uprate”: This is the “biggie.” This is a major job, including replacement and upgrading of the turbine generator, perhaps other plant systems too such as pumps; it’s a major investment and involves a lot of complicated and heavy work. The payoff, though, is that the return on the investment is earlier, and thus the profit comes earlier, than building any kind of new power plant.

Now, the nuclear industry has for some years, in a dearth of construction of new plants, been pointing out that, “Yes, while we’re not building new plants, we’ve had lots and lots of uprates of existing plants—so that we’ve added capacity equal to a number of completely new nuclear plants.”

That’s exactly correct. Over the years since uprates began (in the present sense—more on that later) U.S. nuclear plants have added 6908 MWe of generating capacity (a figure I got by adding up NEI’s graphical figures found here.) If we think about that in terms of the nuclear plants being built brand new today, which are nominally 1000-MWe plants, that’s almost seven new nuclear plants’ worth of power—but at a fraction of the overall cost, because no new siting or major construction was required.

Uprating isn’t new

Calvert Cliffs from landThe first uprate as we now know them was performed at Calvert Cliffs (photo seen at the top of this article and here at left), and actually occurred right after the plant was completed. Originally these two Combustion Engineering pressurized water reactors were rated at 2560 MWt/810 MWe for Unit 1 and 2560 MWt/825 MWe for Unit 2; the units entered commercial operation May 8, 1975, and April 1, 1977, respectively. In 1976, before the second unit came on line, Baltimore Gas and Electric had applied to the Nuclear Regulatory Commission to increase the ratings of both units to 2700 MWt as a “stretch uprate,” which was permitted (after careful analysis) in 1977.

This began a long period of what were mainly stretch uprates; the first extended uprates in the late 1990s did not exceed in percent power some of the stretch uprates of earlier years. Large uprates began after the turn of the century with some as high as 15 percent to 20 percent.

I mentioned that there was a “present sense” of uprates—which began in 1977. There was a time during the early years of operation of nuclear plants that provisional licenses at lower-than-designed power ratings were issued. Plants “tested out” at these provisional ratings, then later were re-licensed to increase power to the full designed level. One of my previous articles for the ANS Nuclear Cafe, describing Pathfinder Atomic Power Plant, mentioned (for the first time anywhere) that the plant originally tested at a provisional power rating, as one example. This was occurring in the 1960s.

So the natural question—really an aside, but worth asking—is this: “What was the first uprate?” My answer has to be N.S. Savannah, 1964. The ship was originally given an operational limit of 69 MWt, so that the original actual core thermal limit of 74 MWt would not be exceeded. It was found very early in her operation that this was not enough power to allow for full propulsion capability (not just her rated continuous 20,000 shaft horse power/SHP but her overload of 22,000 SHP) and full hotel loads. Babcock & Wilcox performed extensive analysis to allow raising the core operational limit to 80 MWt, which was done when the ship returned to service with American Export Isbrandtsen Lines. Some equipment modification was performed concurrently, but no major modifications were required—thus, this would have been a “stretch” uprate.

What now?

I was quite surprised, looking at the tables of nuclear plants, to see that there was really no tabulation of how many had received uprates—so I printed a list and laboriously marked off all the uprates at still-operating plants. Here are my totals by NRC regions.

In Region I, 7 of 26 total reactors have received extended power uprates; 17 have had stretch uprates and 16 have had MUR uprates. (Yes, some have had one, two, or all three at one reactor over the years.) Wow, I thought, that leaves a lot of uprating, even if only potentially likely.

In Region 2, 8 of 32 have received extended power uprates, 22 have received stretch uprates, and 15 have had MURs.

In Region 3, 9 of 23 have received extended power uprates, 9 have received stretch uprates, and 8 have had MURs.

In Region 4, 3 of 19 have received extended power uprates, 11 have received stretch uprates, and 8 have had MURs.

Looking at these figures, there’s a LOT of capacity theoretically left in U.S. nuclear plants in terms of uprates—even though they’ve dropped off in recent times. Only 27 of 100 US reactors have received extended uprates. Way back in 2003, the last time everyone was all agog over nuclear plants because of lowering carbon limits, the Nuclear Energy Institute predicted that U.S. nuclear plants could theoretically add over 10,000 MWe without building any new plants—and of that, about 6500–8500 MWe could come from uprates. (That’s on top of the 6908 MWe already added since 1977 by uprates, by the way.) Considering the totals we’ve just seen as to how many plants have not had the largest type of uprate, and seeing how many could still receive stretch uprates, that figure might roughly hold.

(Note: Yes, I’m aware that some plants included in the total uprates since 1977 have shut down and, yes, I’m aware that not every nuclear plant in the United States is in a location where uprating makes economic sense. Or hasn’t until now.)

I think that as we enter into discussions about the EPA regulations, carbon emissions, and nuclear energy, we should talk about nuclear plants in multiple senses—yes, adding small modular reactors into the mix makes good sense and,,yes, completing selected unfinished nuclear plants makes good sense in other spots. But now, we might wish to inject uprating more nuclear plants into the mix; perhaps we might see some reconsideration beyond the very few current plans for uprates (the NRC expects ZERO extended or stretch uprate applications from now through at least 2017), depending on how the carbon limits, and penalties, play out.

_________________

Note: Uprates for other reactors have been applied for and are in process; Peach Bottom-2 and -3 have extended power uprates planned by the NRC for final approval in September of this year; the only other extended power uprates, for Browns Ferry-1, -2, and -3 are however all on hold. Similarly, MURs for Oconee-1, -2, and -3 are all on hold, and in the last two years a number of planned uprate projects have been cancelled or deferred, such as at Limerick and La Salle.

Further note, just for “nukes”: Yes, for all you sharp-eyed older folks out there, those are indeed Westinghouse KX-24 Hi-Shock meters you saw above, for the power range NIs on SAVANNAH. Her control panel is a mix of these, GE DB40 meters, and Bailey vertical or edge type meters.

___________________

SavannahWillinControlRoomWill Davis is the Communications Director for the N/S Savannah Association, Inc. where he also serves as historian and as a member of the board of directors. Davis has recently been engaged by the Global America Business Institute as a consultant.  He is also a consultant to, and writer for, the American Nuclear Society; an active ANS member, he is serving on the ANS Communications Committee 2013–2016. In addition, he is a contributing author for Fuel Cycle Week, and writes his own popular blog Atomic Power Review. Davis is a former US Navy reactor operator, qualified on S8G and S5W plants.

Vogtle Loan Guarantee Finally Approved

By Jim Hopf

DC PerspectivesIn February, the U.S. Department of Energy finally announced the approval of a federal loan guarantee for the Vogtle-3 and -4 reactor project under construction near Waynesboro, Ga. The approval came after four years of negotiations between the government and the utilities involved in the Vogtle project.

Credit subsidy fee

It appears that the Vogtle project will not have to pay a credit subsidy fee for the loan. (The fee is an upfront cash payment made to the government to compensate it for the risk of guaranteeing a loan).

It should be noted that all renewable energy projects receiving similar federal loan guarantees are exempted from paying any credit subsidy fee, regardless of project risk. The appropriate fee for each project is estimated by the government, but the fee is then paid for through government appropriations.

The initial intent of the government was to treat nuclear differently, and to make the nuclear utilities, as opposed to the government, pay the credit subsidy fee. In the case of the Vogtle project, the government did not appropriate money to pay for the fee. Instead, it made a determination that the financial risks were not significant, and that therefore the appropriate fee is negligible.

Reasons for removing fee

The situation with the nuclear loan guarantees reminds me of a personal experience I had with a car salesman trying to sell me an insurance program. The insurance would cover any charges I could face when returning the car at the end of the lease (to cover vehicle damage, etc.). The initial offer started at ~$25/month added to the lease payment. As I continued to express lack of interest, the price offered for the insurance dropped dramatically. At one point, the salesman exclaimed, “I can’t give this thing away!” Finally, after he offered the protection for less than $1/month, I agreed to it, more out of sympathy for him than seeing merit in the program.

Similarly, the DOE initially asked for a significant credit subsidy fee, but the Vogtle project utilities repeatedly refused to accept the government’s offer. The primary reason for the utilities’ refusal was that they would have been able to secure private financing, with no government help, under better terms. Contrary to many people’s expectations, the nuclear projects had no trouble finding willing, private sources of financing.

In fact, the other new nuclear plant project proceeding in the United States—the Summer project in South Carolina—informed the federal government a long time ago that it would not pursue a government loan guarantee. The reasons it gave were that it was having no trouble finding private financing with equal or better terms, and that applying for the government loan guarantee was not worth the effort.

Even with the Vogtle project, the federal loan guarantee provides very little benefit, and will not significantly reduce overall project costs. The chairman of Southern Company (the primary utility involved in the Vogtle project) estimates a benefit of ~$200 million out of a total project cost of $15.5 billion.

Political considerations

Part of me almost regrets the fact that they finally came to an agreement, and I almost would rather have seen the Vogtle project proceed entirely with private financing. That outcome would have helped nuclear advocates’ arguments overall.

The fact that Vogtle is proceeding under a federal loan guarantee allows nuclear opponents to continue to argue (however speciously) that the projects needed loan guarantees to proceed. They will simply not mention how the Vogtle project was proceeding even without the loan guarantee, or how the Summer project is not relying on a loan guarantee at all.

The fact that the loan guarantee was granted with no credit subsidy fee helps the antis’ arguments even more, as they can characterize it as an unnecessary subsidy to a mature industry. Yes, they will assiduously ignore the fact that renewable energy projects routinely get loan guarantees with no credit subsidy fee. (Renewable energy projects also often get their production tax credit subsidies in the form of a large upfront, lump sum payment that covers a large fraction of their initial capital cost, a far more beneficial arrangement that no nuclear project could ever dream of.)

As for the federal government (i.e., the Obama administration), the reason why it finally agreed to waive any credit subsidy fee (in my opinion) is that it desperately wanted to chalk up at least one “win.” That is, it wanted to demonstrate that it does support nuclear, and it didn’t want to admit that the nuclear loan guarantee program was a total failure.

If no loan guarantees were granted, however, both the projects would have proceeded anyway, and there would have been no significant financial impact. That would have allowed nuclear advocates to argue that nuclear projects (in regulated markets, at least) did not need such loans, and that there were no associated subsidies. It would have largely eliminated the attacks the projects are receiving from the right side of the political spectrum, from groups like the Tea Party and Taxpayers for Common Sense.

A step further

It’s clear that nuclear projects in regulated (rate base) markets, like those prevalent in the southeast United States, do not need loan guarantees. They are not even significantly benefited by them. However, it also seems clear that in unregulated electricity markets, any new nuclear plant project would need a loan guarantee, as the financial risks are much higher.

The government offered loan guarantees to plants in unregulated markets, but the credit subsidy fees demanded by the feds were so high that it resulted in the cancellation of projects.

What the government should do is treat nuclear projects the same way it treats renewable energy projects, and not apply any credit subsidy fees. Would that be a subsidy? Yes. Sources of clean energy, such as new nuclear, should receive subsidies, given the fact that government policies continue to apply no financial disincentive to emit CO2 or other pollutants. If renewable energy projects receive such subsidies, non-polluting nuclear projects should receive them as well.

The argument that all non-emitting energy sources should be treated equally is an emerging theme that needs to be communicated to policymakers by the American Nuclear Society and the nuclear industry in general. This message is becoming even more important in the context of the U.S. Environmental Protection Agency’s new CO2 emissions reduction policies, allowing states to choose how to reduce emissions. Many states may be open to policies that treat nuclear and renewable sources equally. The industry needs to make the case to policymakers in those states.

vogtle june 2014 400x240

____________________

Hopf

Hopf

Jim Hopf is a senior nuclear engineer with more than 20 years of experience in shielding and criticality analysis and design for spent fuel dry storage and transportation systems. He has been involved in nuclear advocacy for 10+ years, and is a member of the ANS Public Information Committee. He is a regular contributor to the ANS Nuclear Cafe.

Accepting the Science of Biological Effects of Low Level Radiation

By Rod Adams

A group of past presidents and fellows of the American Nuclear Society has composed an important open letter to ANS on a topic that has been the subject of controversy since before I first joined the society in 1994. The subject line of that letter is “Resolving the issue of the science of biological effects of low level radiation.” The letter is currently the only item on a new web site that has been created in memory of Ted Rockwell, one of the pioneers of ANS and the namesake of its award for lifetime achievement.

LNT and “no safe dose”

Ted was a strong science supporter who argued for many years that we needed to stop accepting an assumption created in the 1950s without data as the basis for our radiation protection regulations. That assumption, which most insiders call the “LNT”—linear no-threshold dose response—says that risk from radiation is linearly proportional to dose all the way to the origin of zero risk, zero dose.

Many people who support the continued use of this assumption as the basis for regulation plug their ears and cover their eyes to the fact that those who oppose the use of nuclear energy, food irradiation, or medical treatments that take advantage of radiation’s useful properties translate our mathematically neutral term into something far more fear-inspiring: They loudly and frequently proclaim that the scientific consensus is that there is “no safe dose” of radiation.

Some people who support the use of nuclear energy and who are nuclear professionals help turn up the volume of this repeated cry:

Delvan Neville, lead author of the study and a graduate research assistant in the Department of Nuclear Engineering and Radiation Health Physics at Oregon State University, told the Statesman Journal Apr. 28, “You can’t say there is absolutely zero risk because any radiation is assumed to carry at least some small risk.”

While most scientists and engineers understand that the LNT assumption means that tiny doses have tiny risks that disappear into the noise of daily living, the people who scream “no safe dose” want their listeners to believe it means that all radiation is dangerous. They see no need to complicate the conversation with trivial matters like measurements and units (I am being ironic here).

Scientists and engineers almost immediately ask “how much” before starting to get worried; but others can be spurred into action simply by hearing that there is “radiation” or “contamination” and it is coming to get them and their children. When it comes to radiation and radiation dose rates, we nuclear professionals have not made it easy for ourselves or for the public, using a complicated set of units, and in the United States remaining stubbornly “American” by refusing to convert to the international standards.

Aside: There is no good reason for our failure to accept international radiation-related measurement units of Sieverts, Bequerel, and Grays. Laziness and “it’s always been that way” are lousy reasons. I’m going to make a new pledge right now—I will use International System of Units (SI) units exclusively and no longer use Rem, Curies, or Rad. After experiencing the communications confusion complicated by incompatible units during and after the Fukushima event, the Health Physics Society adopted a position statement specifying exclusive use of SI units for talking or writing about radiation, and perhaps ANS should adopt it as well. End Aside.

Physics or biology?

Leaving aside the propaganda value associated with the cry of “no safe dose,” an important factor that supports a high priority to the effort to resolve the biological effects of low-level radiation is the fact that the LNT uses the wrong science altogether.

The LNT assumption was created by persons who viewed the world through the lens of physics. When dealing with inanimate physical objects all the way down to the tiniest particles like neutrons, protons, mesons, and baryons, statistics and uncertainty principles work well to predict the outcome of each event. An atom that fissions or decays into a new isotope has no mechanism that works to reverse that change. A radiation response assumption that applies in physics, however, is an inadequate assumption when the target is a living organism that has inherent repair mechanisms. Biology is the right science to use here.

At the time that the LNT was accepted, decision-makers had an excuse. Molecular biology was a brand new science and there were few tools available for measuring the effects that various doses of radiation have on living organisms.

The assumption itself, however, has since inhibited a major tool used by biologists and those who study the efficacy of medical treatments: Since all radiation was assumed to be damaging and could only be used in medicine in cases where there was an existing condition that might be improved, it was considered unethical to set up well-designed randomized controlled trials to expose healthy people to carefully measured doses of radiation while having a controlled, unexposed group.

Instead, health effects studies involving humans have normally been of the less precise observational methods of case-control or cohort variety, with occupationally or accidentally exposed persons. The nature of the exposures in those studies often introduces a large measurement uncertainty, and there are complicating factors that are often difficult to address in an observational study.

Science marches on, but will LNT?

Molecular biology and its available tools have progressed dramatically since the LNT was adopted by BEIR I (Committee on the Biological Effects of Ionizing Radiation) in 1956. It is now possible to measure effects, both short-term and long-term, and to watch the response and repair mechanisms actually at work. One of the key findings that biologists have uncovered in recent years is the fact that the number of radiation-induced DNA events at modest radiation dose rates are dwarfed, by several orders of magnitude, by essentially identical events caused by “ordinary” oxidative stress.

This area of research (and others) could lead to a far better understanding of the biological effects of low-level radiation. Unfortunately, the pace of the research effort has slowed down in the United States because the Department of Energy’s low dose research program was defunded in 2011 for unexplained reasons.

It is past time to replace the LNT assumption with a model that uses the correct scientific discipline—biology, rather than physics—to predict biological effects of low-level radiation. I’ll conclude by quoting the final paragraph of the ANS past presidents’ open letter, which I encourage all ANS members, both past and present, to read, understand, and sign:

The LNT model has been long-embedded into our thinking about radiation risk and nuclear energy to the point of near unquestioned acceptance. Because of strict adherence to this hypothesis, untold physiological damage has resulted from the Fukushima accident—a situation in which no person has received a sufficient radiation dose to cause a significant health issue—yet thousands have had their lives unnecessarily and intolerably uprooted. The proposed actions will spark controversy because it could very well dislodge long-held beliefs. But as a community of science-minded professionals, it is our responsibility to provide leadership. We ask that our Society serve in this capacity.

Additional reading

Yes Vermont Yankee (June 23, 2014)  “No Safe Dose” is Bad Science. Updated. Guest Post by Howard Shaffer

Atomic Insights (June 21, 2014) Resolving the issue of the science of biological effects of low level radiation

dna 432x201

____________________

Adams

Adams

Rod Adams is a nuclear advocate with extensive small nuclear plant operating experience. Adams is a former engineer officer, USS Von Steuben. He is the host and producer of The Atomic Show Podcast. Adams has been an ANS member since 2005. He writes about nuclear technology at his own blog, Atomic Insights.

Nuclear Energy Blogger Carnival 214

ferriswheel 201x268The 214th Carnival of Nuclear Energy Bloggers has been posted at Atomic Power Review.  You can click here to access this latest edition of a long-standing tradition.

Each week, a new edition of the Carnival is hosted at one of the top English-language nuclear blogs. This rotating feature of nuclear “posts of the week” represents the dedication of those who are working toward a future of energy abundance, improved health, and broadened security through nuclear science and technology.

Past editions of the carnival have been hosted at Yes Vermont Yankee, Atomic Power Review, ANS Nuclear Cafe, NEI Nuclear Notes, Next Big Future, Atomic Insights, Hiroshima Syndrome, Things Worse Than Nuclear Power, EntrepreNuke, Thorium MSR and Deregulate the Atom.

This is a great collaborative effort that deserves your support.  If you have a pro-nuclear energy blog and would like to host an edition of the carnival, please contact Brain Wang at Next Big Future to get on the rotation.